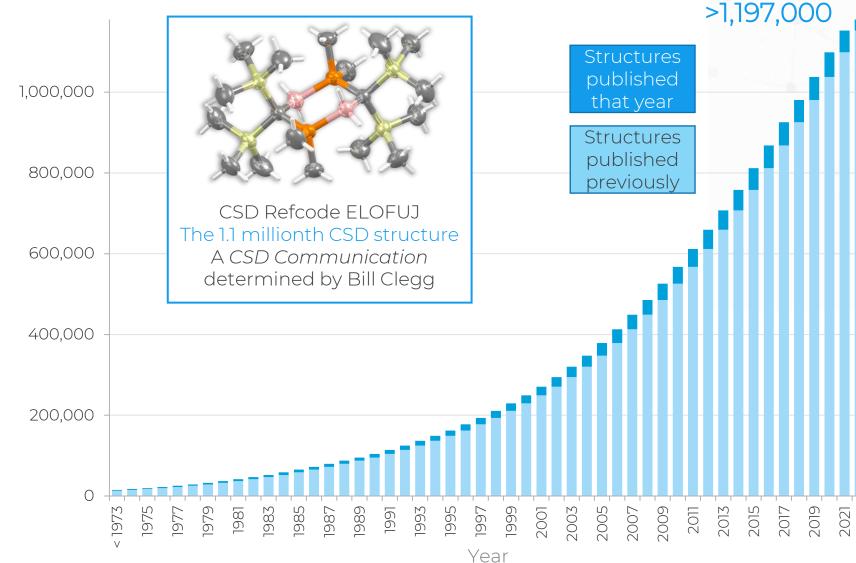
How to visualise and analyse surfaces using Mercury

CCDC Virtual Workshop

Alex Moldovan, Ilaria Gimondi, Pietro Sacchi, Suzanna Ward, Andy Maloney

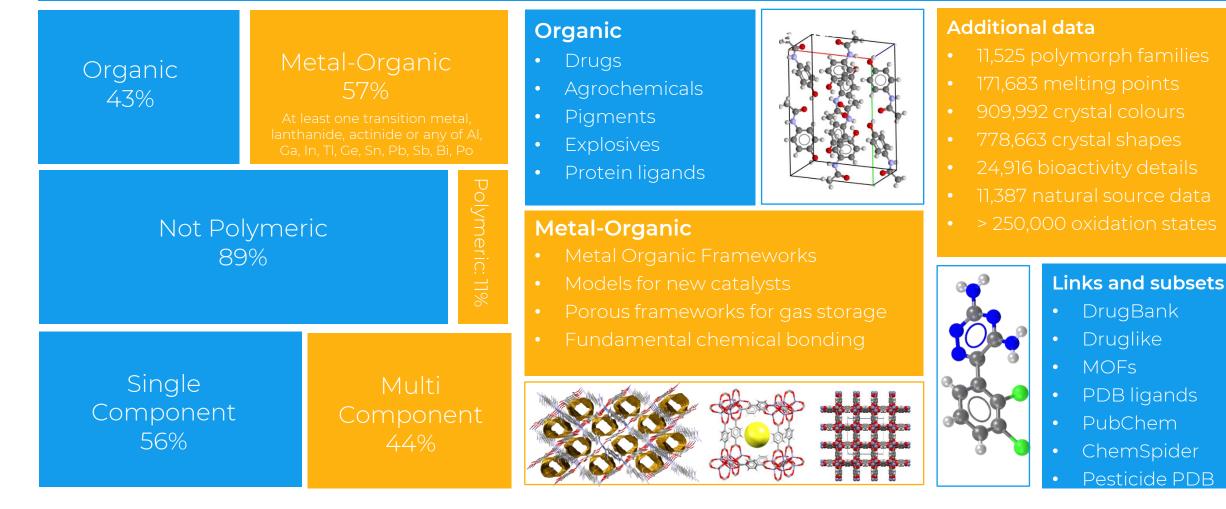
October 2022



Learning outcomes for today

- Learn how informatics and data-driven approaches can be used to understand particle properties.
- Familiarise yourself with what tools are available in the CSD-Particle suite and what they can be used to do.
- Learn how to use Surface Analysis and Slip Planes to identify key particle properties.

The Cambridge Structural Database


- Every published structure
 - Inc. ASAP & early view
 - CSD Communications
 - Patents
 - University repositories
 - Thesis
- Every entry enriched and annotated by experts
- Discoverability of data and knowledge
- Sustainable for over 57 years
- A trusted CoreTrustSeal repository

Certified as Trustworthy by CoreTrustSeal

Inside the Cambridge Structural Database

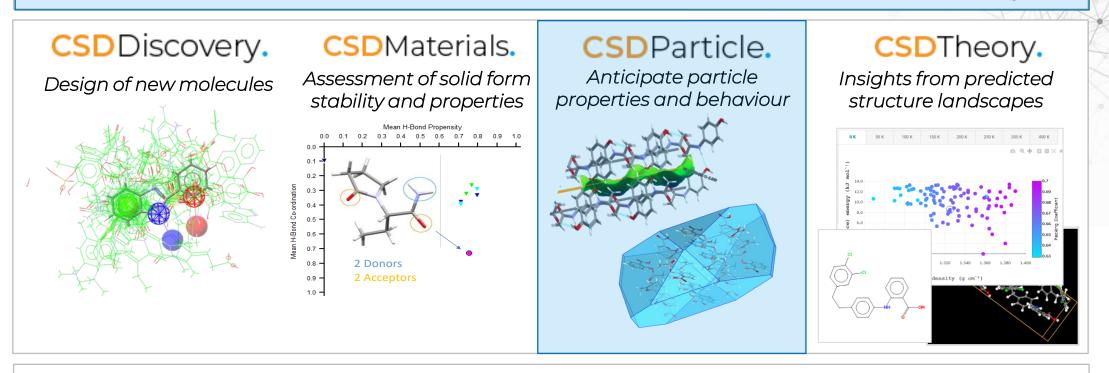
The CSD is a database of all the published organic and metal-organic experimental crystal structures

The vision

BERNAL'S VISION: FROM DATA TO INSIGHT

by Dr Olga Kennard OBE FRS

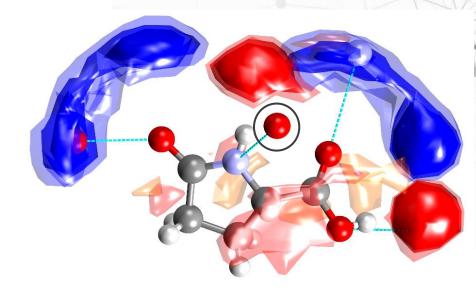
THE J D BERNAL LECTURE 1995 delivered at BIRKBECK COLLEGE, LONDON



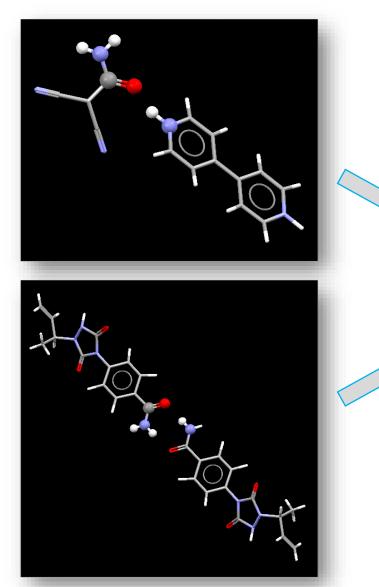
We clearly recognised even in those early days, that data banks have three principal functions. Firstly they must gather together existing knowledge and make it readily available to the scientific community. Secondly they can be used to reduce a large number of observations to a small set of constants and rules, and in this way transform a data base to a knowledge base. Such a knowledge base may obviate the need for further individual experiments in specific areas. Thirdly, they facilitate the comparison and collective analysis of individual results to gain insight into new or as yet unexplained phenomena. These ideas have been at the heart of the work of the Cambridge Crystallographic Data Centre and the driving force for improving methods of data collection, storage and dissemination. Most importantly they influenced development of computer programs and methodologies which are needed for the analysis and transformation of the accumulated information. (5)

Software to gain new insights

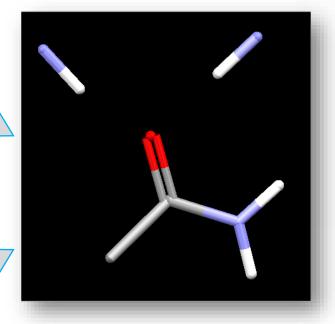
CSDCore.

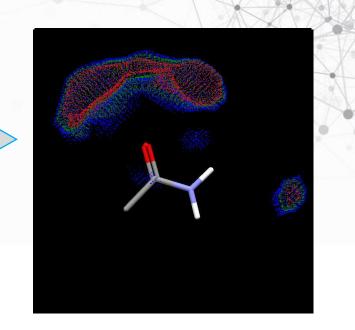

Search, visualise, analyse and communicate structural data Insights into molecular and crystal shape and interactions

Medicinal & Computational Chemists ♦ Crystallographers & Structural Biologists ♦ Solid Form & Crystallisation Scientists


Key concepts - Full Interaction Maps

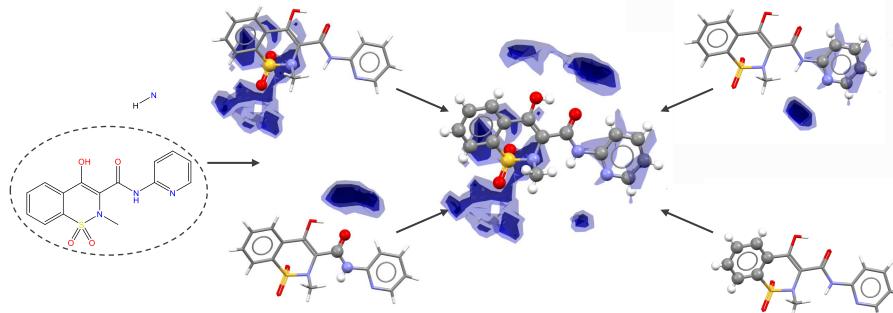
- Map interaction preferences around complete molecules in a crystal structure
- Visualise observed atom-atom contacts with respect to likely geometries in 3D space
- Identify interaction hot-spots around chemical groups





Key concepts - Full Interaction Maps

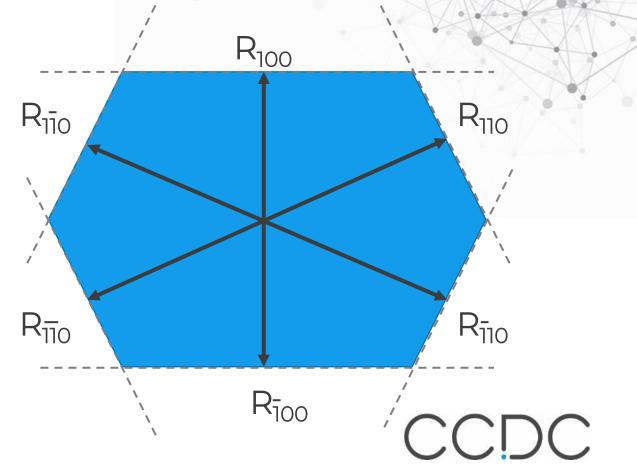
central group: -CONH₂ contact group: NH



Search for structures containing desired contact

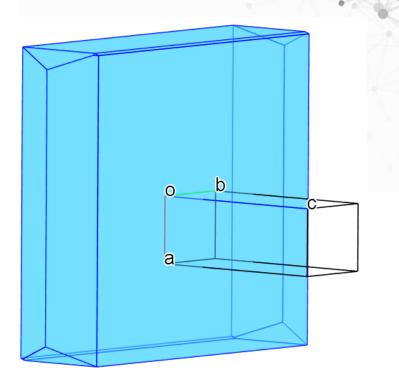
Superimpose hits and display as scatterplots or contour plots

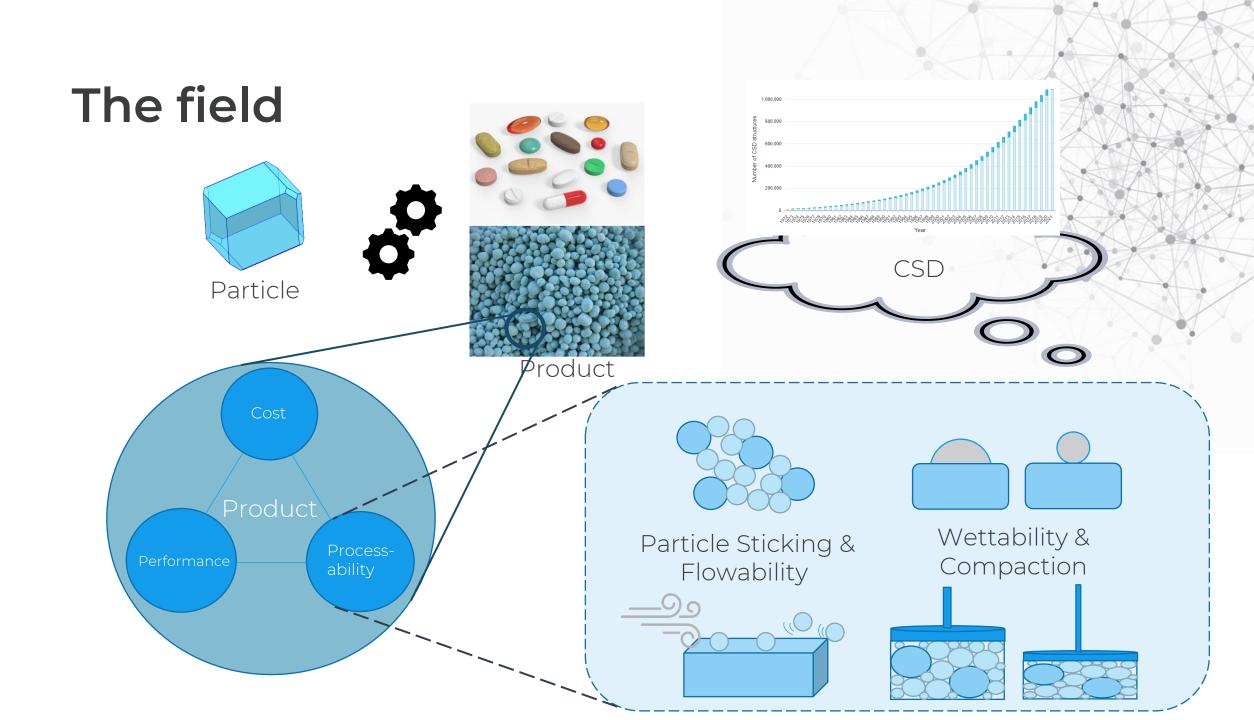
Key concepts - Full Interaction Maps


- Molecule is broken down into fragments
- IsoStar maps for each fragment are combined to give the Full Interaction Map

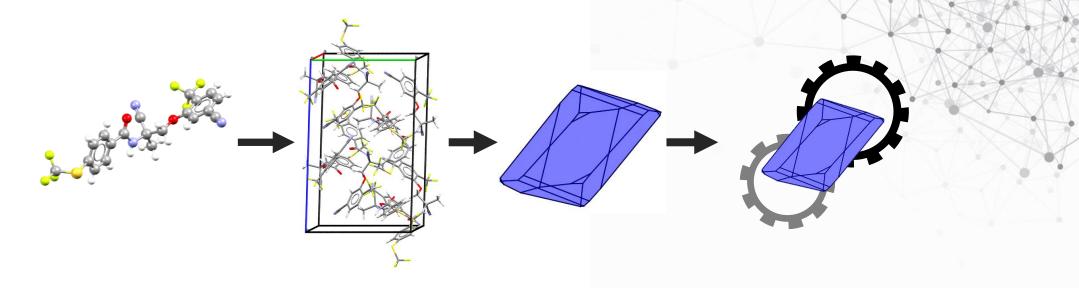
- Multiple maps can be generated for different probes
- P. A. Wood *et al., CrystEngComm* (2013), **15**, 65–72

Key concepts - How do crystals grow?

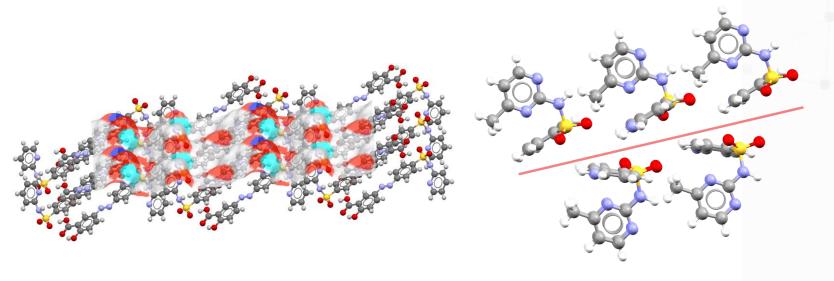

- Depends on <u>relative growth rates</u>
 - R_{hkl}
 - Faster growing faces are smaller
- Growth rates are dependent on many things
 - Supersaturation
 - Solvents
 - Impurities

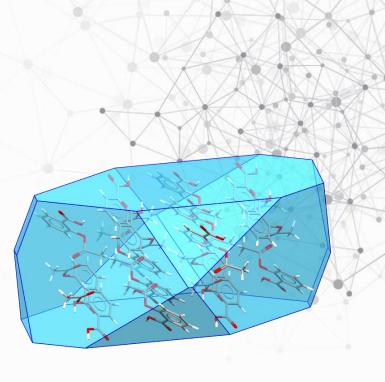


Key concepts – BFDH morphologies


- Simplest morphology model
 - Essentially based on unit cell
- Point molecules
- Growth rates inversely proportional to distance between Miller planes
- Layer-on-layer growth
- Independent of growth environment

A. Bravais, *Études Crystallographiques*, Gauthier-Villars, Paris, (1866)
M.G. Friedel *Bull. Soc. Franc. Miner.* (1907), 9, 326-455.
J.D. Donnay, D. Harker, *Amer. Min.* (1937), 22, 446-467.


From Solid Form to Particle Properties

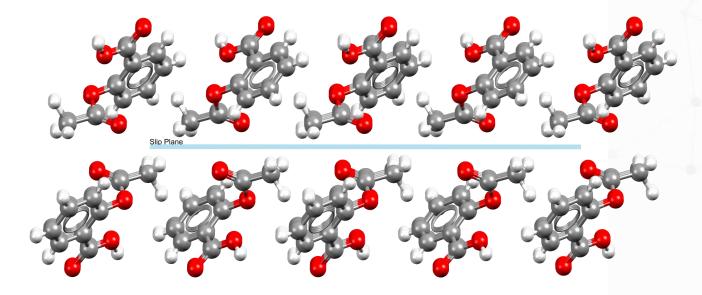


MoleculeFormParticlePropertiesSolid Form Informatics

Particle Informatics

Particle Informatics

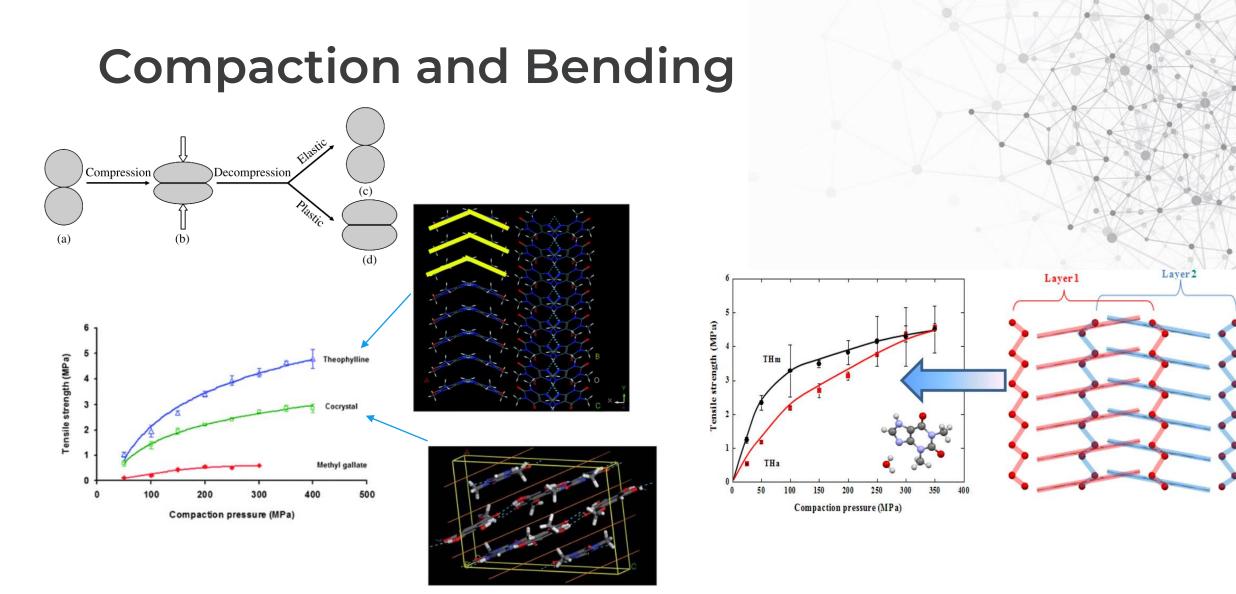
Visualisation and analysis of surface properties


Identification and analysis of potential slip planes

Morphology calculations

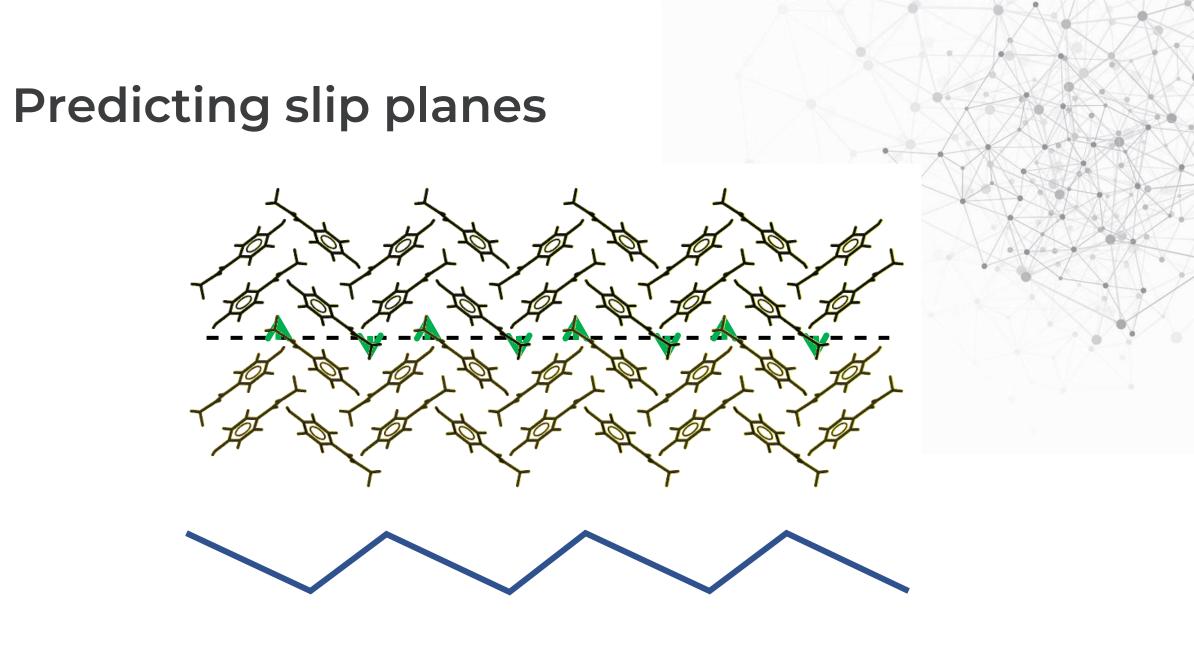
CCDC

- Ongoing research projects into particle and surface phenomena are developing our understanding of formulation and manufacturing processes
- Application of rapid, informatics-based approaches to understand the link between crystal structure and properties that influence downstream behaviour


M. J. Bryant et al., Cryst. Growth Des. (2019), 19, 9, 5258-5266

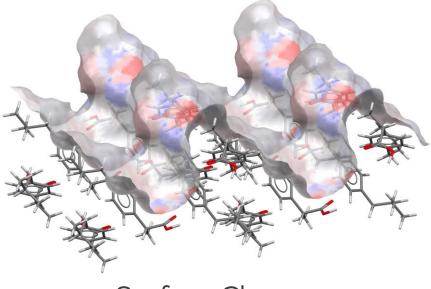
Slip Planes

- Identification of Potential Slip
 Planes
- Analysis of Structure Hydrogen Network



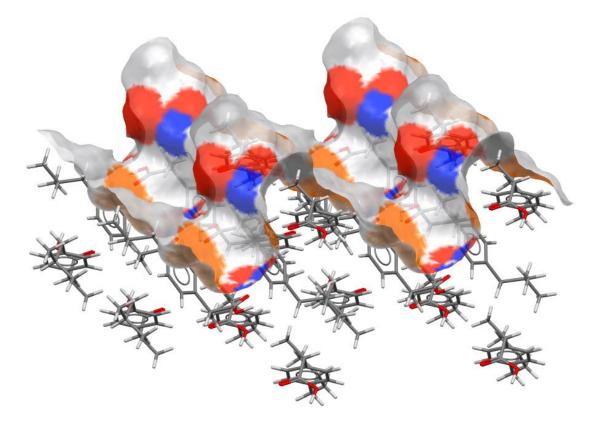
S. Chang and C. C. Sun Molecular Pharmaceutics 2017 14 (6), 2047-2055 10.1021/acs.molpharmaceut.7b00124

CCDC

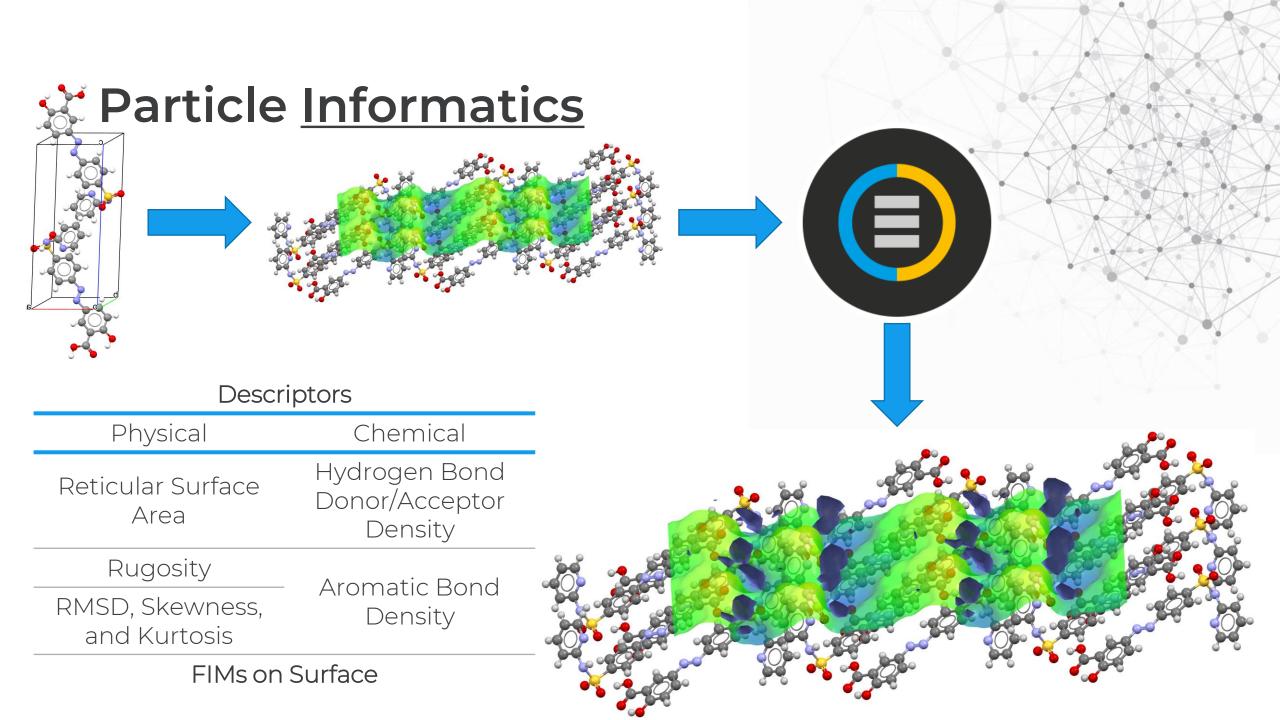

S. Chattoraj, L. Shi, C.C. Sun *CrystEngComm*, 2010,12, 2466–2472 | 2467 10.1039/C000614A

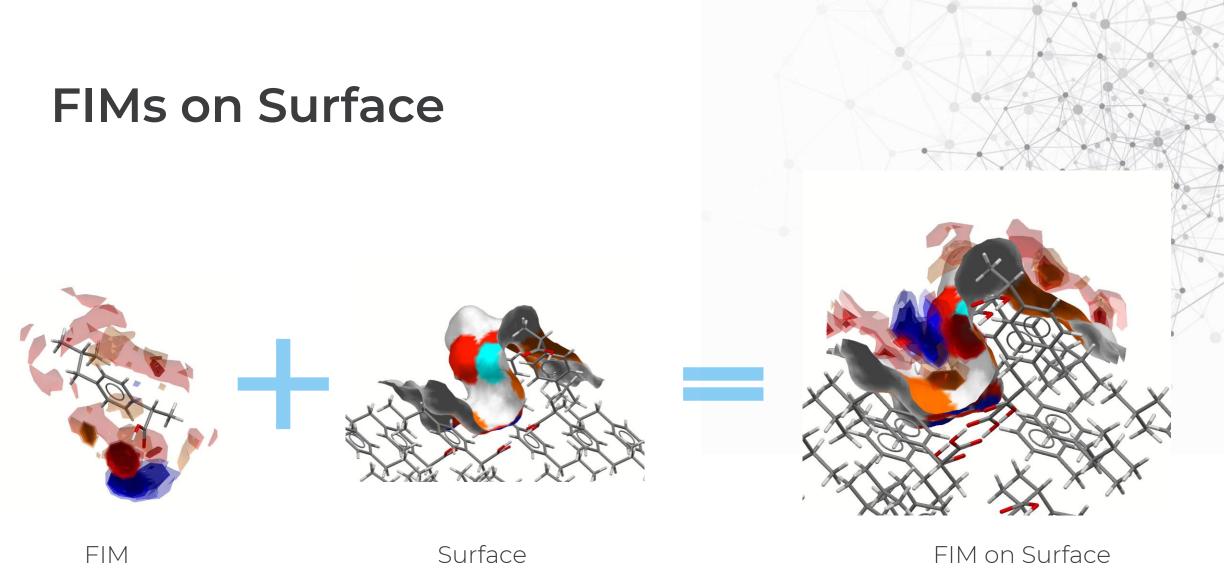
M. J. Bryant et al., CrystEngComm (2018), **20**, 2698-2704

Surface Chemistry Surface Analysis



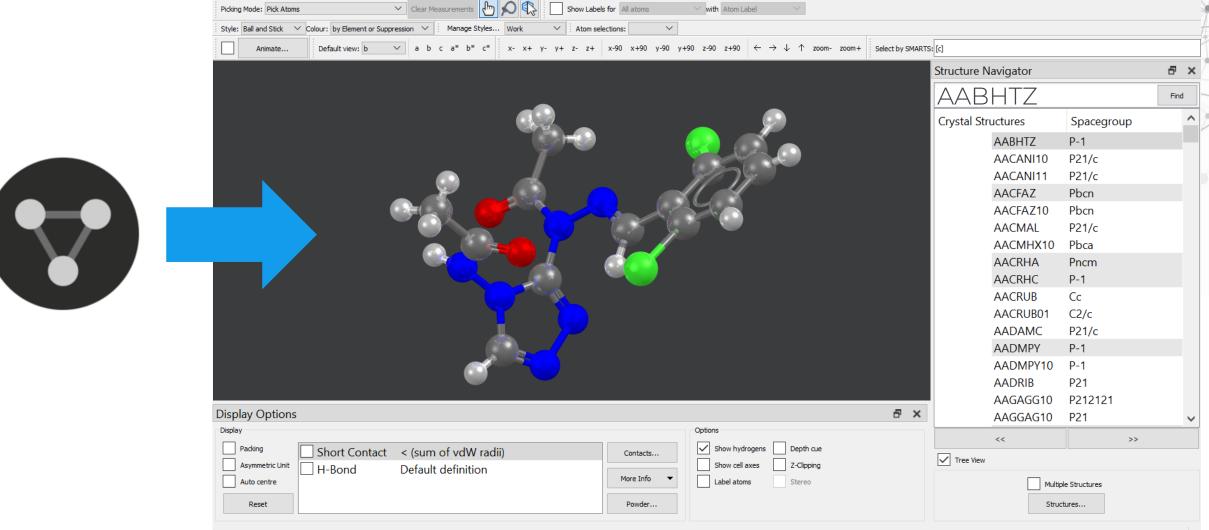
Surface Charge


Surface Roughness



Surface Analysis

	Descri	ptors
Physic	cal	Chemical
Reticular Surface Area		Hydrogen Bond Donor/Acceptor Density
Rugos	sity	Aromatic Bond
RMSD, Skewness, and Kurtosis		Density
Statistica	Ily Derived	d Interaction Data

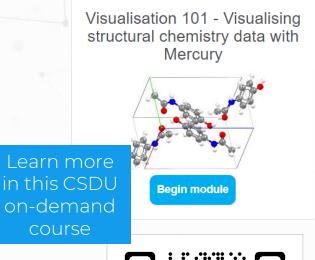

Accessing CSD-Particle through Mercury

AABHTZ (P-1) - Mercury

File Edit Selection Display Calculate CSD-Community CSD-Core CSD-Materials CSD-Theory CSD-Particle CSD-Discovery CSD Python API Help

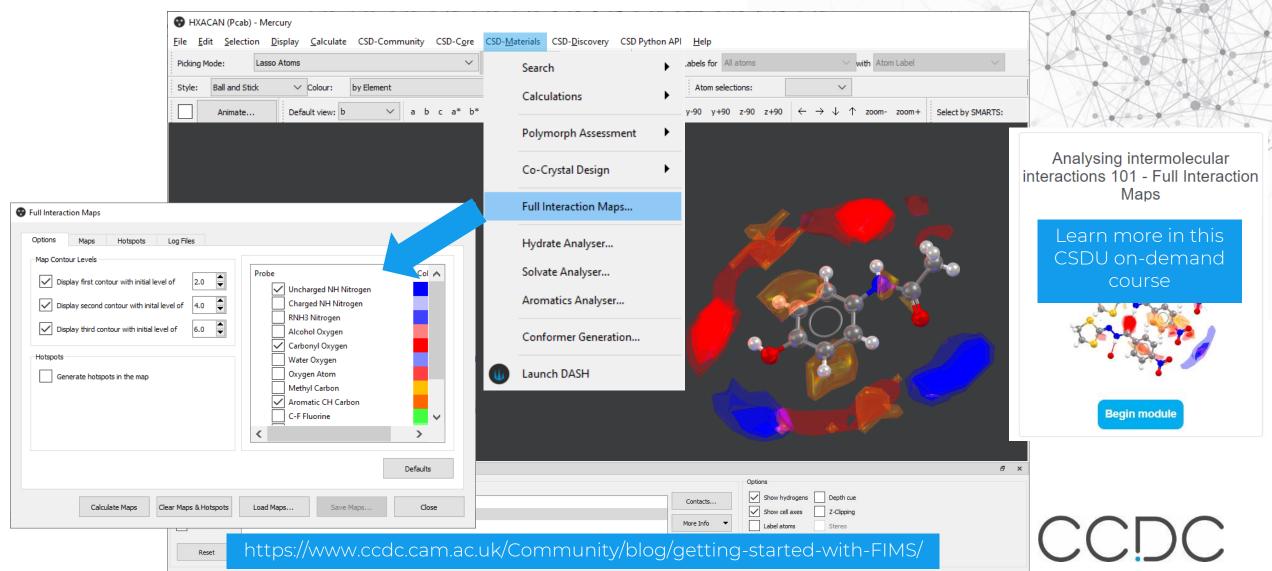
 \square

 \times


Press the left mouse button and move the mouse to rotate the structure

Reminder: Basic navigation in Mercury

- Left mouse button and move rotate molecules
 - Middle Mouse wheel move molecules up and down
 - Right mouse button and move up and down zoom in and out of molecules



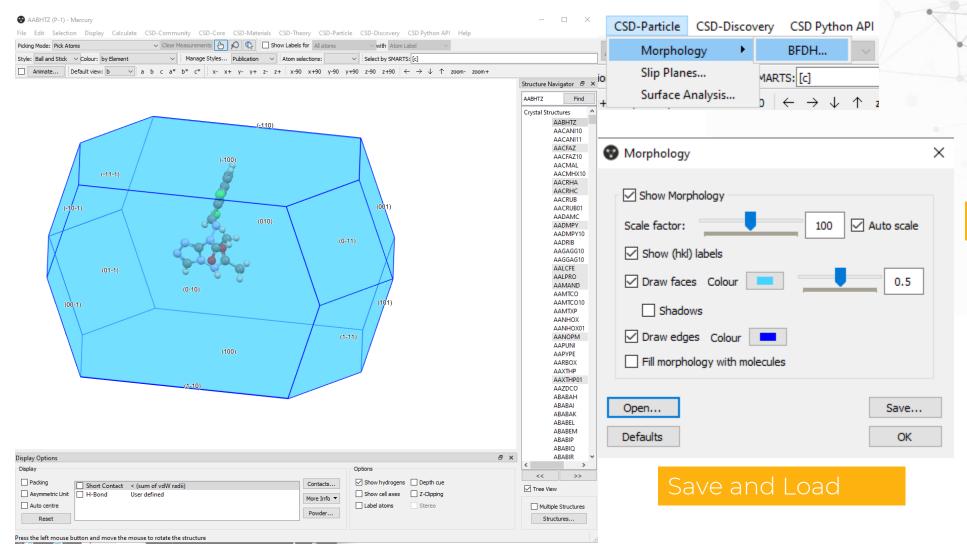
- Shift + Left mouse button and move rotate in the plane molecules
- Ctrl 🕂
 - Ctrl + Left mouse button and move translate molecules

Creating a Full Interaction Map

Press the left mouse button and move the mouse to rotate the structure

CSD-Particle Menu

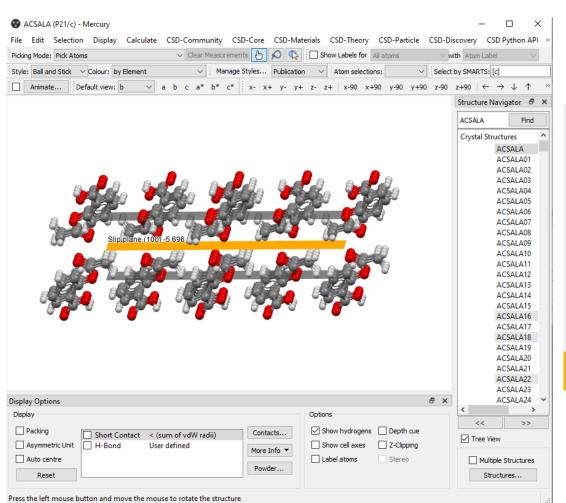
AABHTZ (P-1) - Mercury

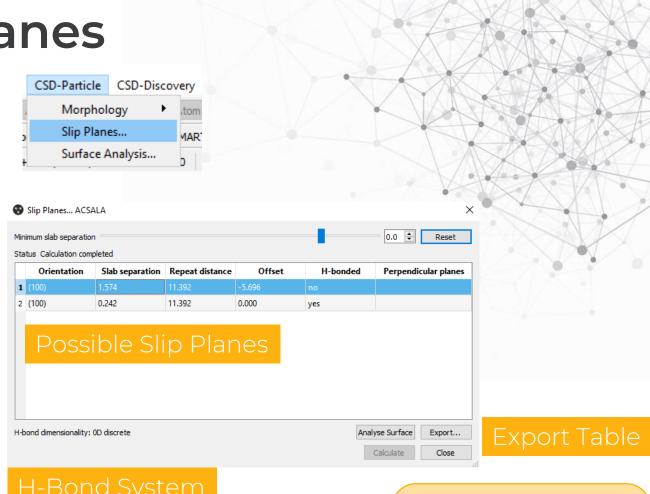

	Atom sel	/ ▶		
Animate Default view: b v a b c a* b* c* x- x+ y- y+ z-	2+ x-90 Slip Planes	zoom- zoom+		
	Surface Area	harden -	Structure Navigator	
	Surface Ana	iysis	AABHTZ	Fir
			Crystal Structures	Spacegrou
			AABHTZ	P-1
			AACANI10	
	۵.		AACANI11 AACFAZ	P21/c Pbcn
			AACFAZ10	
	7		AACMAL	P21/c
			AACMHX10	
			AACRHA	Pncm
			AACRHC AACRUB	P-1 Cc
			AACRUB01	
			AADAMC	P21/c
			AADMPY	P-1
			AADMPY10	
			AADRIB	P21
			AAGAGG10 AAGGAG10	
			AALCFE	P21/c
¥ 4			AALPRO	P21/c
	-		AAMAND	P212121
			AAMTCO AAMTCO10	P-1
			AAMICOIU	P21/n
			AANHOX	Pna21
			AANHOX01	Pna21
			AANOPM	P21
			AAPUNI	P21/a
			AAPYPE AARBOX	P21/c P21
Display Options		5 ×	AAKBOA	P212121
Display	Options		AAVTUDO1	0010101
Packing	Contacts Show h	ydrogens 🗌 Depth cue	<<	>>
Packing Short Contact < (sum of vdW radii) Asymmetric Unit H-Bond User defined	Show of		Tree View	
	More Info ▼ Label a		Multiple Str	ructures
	Powder			

 $\Box \times$

CCDC

_

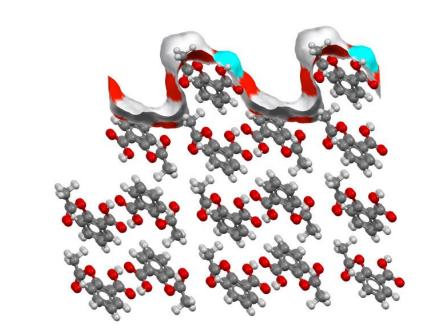

CSD-Particle – Morphology - BFDH



Display Options

Learn more on BFDH Morphology in the *Glossary* in the handout.

CSD-Particle – Slip Planes



Learn more on Slip Planes in the *Glossary* in the handout.

		CSD-Particle	CSD-Discov	/erv		
					😨 Surface Analysis ACSALA	>
		Morpholo Slip Plane		MAR	Analyse	
		Surface A	nalysis		Select surface orientation (hkl) and offset (o)	
S ACSALA (P21/c) - Mercury				0	h: 0 🜩 k: 0 🌩 l: 2 🌩 o: 0.00 🌩	Preview Slab
File Edit Selection Display Calculate CSD-Commun	ity CSD-Core CSD-Materials CSD-Theory CSD-Particle CSD-I	Discovery CSD Python API H	lelp		Show Advanced Options	
Picking Mode: Pick Atoms V Clear Mea	asurements 🛃 🔎 🕼 🗆 Show Labels for All atoms 🗸 🗸	with Atom Label 💛			Full Interaction Map	Calculate Surface
Style: Ball and Stick V Colour: by Element V	Manage Styles Publication V Atom selections: V Selections	ect by SMARTS: [c]			Puilinteracuon Map	Calculate Surface
Animate Default view: b 🗸 a b c a* b	o* c* x- x+ y- y+ z- z+ x-90 x+90 y-90 y+90 z-90	$z_{\pm 90} \leftrightarrow \rightarrow \downarrow \uparrow zoom$	n- zoom+			

Results - ACSALA (002)[0.00]

Density Info (count	/Ų)		
H-Bond Acceptors:	0.079	Aromatic Bonds:	0.159
H-Bond Donors:	0.013	Unsatisfied H-Bond Dono	rs: 0.013
Topology Info			
Surface Area (Ų):	637.558	Projected Area (Å ²):	301.991
Rugosity:	2.111	RMSD:	2.273
Skewness:	0.052	Kurtosis:	1.729
Display Options		Atom Properties	
pacity: (%)		Hain Toperaco	100 🖨
Periodic View		Hide Molecules	
Atom Properties			
Charge		H-Bond Acceptor	s
Aromatic		H-Bond Donors	
		Unsatisfied H-Bo	nd Donors
Reset			Close

CCD Destinia CCD Discourse

	CSD-Particle CSD-Dis	covery	😵 Surface Analysis ACSALA	
	Morphology Slip Planes Surface Analysis	 Itom MAR D 	Analyse Select surface orientation (hkl) a	
Style: Ball and Stick V Colour: by Element V Manage Styles Publication V Atom selections: V S	with Atom Label		h: 0	Full Interaction
Animate Default view: b v a b c a* b* c* x- x+ y- y+ z- z+ x-90 x+90 y-90 y+90 z	-30 2+30 C -7 V T 200m- 200m+	_	Results - ACSALA (002)[0.00] Density Info (count/Ų) H-Bond Acceptors: 0.079 H-Bond Donors: 0.013 Topology Info Surface Area (Ų): 637.558 Rugosity: 2.111 Skewness: 0.052	Aromatic Bor Unsatisfied H Projecter RMSD: Kurtosis:
			Display Options Surface colouring: Opacity: (%) Periodic View Atom Properties Charge Aromatic	Atom P Hide H-Bo H-Bo Unsa
the of the second			Reset	

matic Bonds: 0.159 satisfied H-Bond Donors: 0.013 Projected Area (Å2): 301.991 RMSD: 2.273 1.729 Kurtosis: Atom Properties 100 ≑ Hide Molecules H-Bond Acceptors H-Bond Donors Unsatisfied H-Bond Donors Close

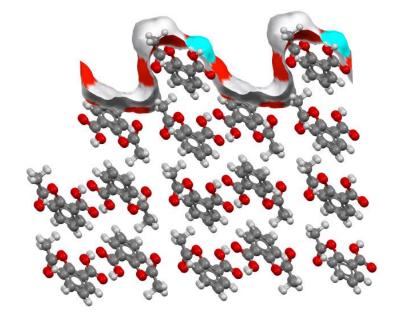
Preview Slab

Calculate Surface

+

interaction Map

×


Learn more about these parameters in the Glossary in the handout.

CSD-Particle CSD-Discov							
Morphology							
Slip Planes							
Surface A	nalysis	D					

SACSALA (P21/c) - Mercury

File Edit Selection Display Calculate CSD-Community CSD-Core CSD-Materials CSD-Theory CSD-Particle CSD-Discovery CSD Python API Help	File E	dit Selection	Display	Calculate	CSD-Community	CSD-Core	CSD-Materials	CSD-Theory	CSD-Particle	CSD-Discovery	CSD Python API	Help
--	--------	---------------	---------	-----------	---------------	----------	---------------	------------	--------------	---------------	----------------	------

Picking Mode: Pick Atoms							1000				-		w Labels					with Ato						
Style: Ball and Stick 🗸 Colour:	by Element			~	Ma	anage	Style	s	Publi	cation		~	Atom sel	ections:		~	Selec	t by SMA	ARTS:	[c]				
Animate Default view	: b ~	a b	с	a*	b*	c *	x-	x+	у-	y+	z-	z+	x-90	x+90	y-90	y +90	z-90	z+90	\leftarrow	\rightarrow	ψ ·	∱ zo	om-	zoom+

Ø	Surface Analysis ACSALA	
---	-------------------------	--

Analyse

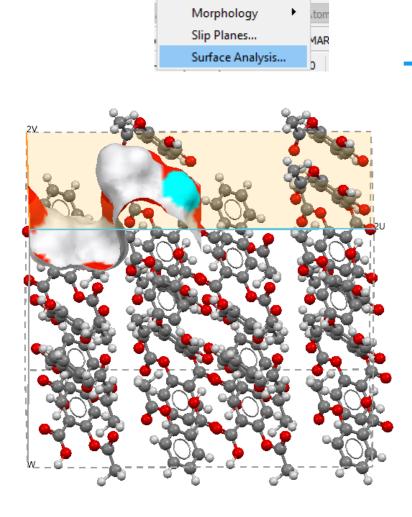
Select surface orientation (hkl) a	nd offset (o)

h: 0 🜩 k: 0 🜩 l: 2 🜩 o: 0.00

Preview Slab

Full Interaction Map Calculate Surface

+


Results - ACSALA (002)[0.00]

Show Advanced Options

Density Info (count	/Å2)			
· · ·				
H-Bond Acceptors:	0.079	Aror	matic Bonds:	0.159
H-Bond Donors:	0.013	Uns	atisfied H-Bond Donoi	rs: 0.013
Topology Info				
Surface Area (Ų):	637.558	F	Projected Area (Ų):	301.991
Rugosity:	2.111	F	RMSD:	2.273
Skewness:	0.052	1	Kurtosis:	1.729

Display Options Surface colouring: Atom Properties 100 ≑ Opacity: (%) Periodic View Hide Molecules Atom Properties H-Bond Acceptors Charge H-Bond Donors Aromatic Unsatisfied H-Bond Donors Close Reset

CSD-Particle CSD-Discovery

Surface Analysis ACSALA		×
Analyse		
Select surface orientation (hkl) a	nd offset (o)	
h: 0 🜩 k: 0 🜩 l: 2 🌩	o: 0.00 ≑	Preview Slab
Show Advanced Options		
Size of Surface:	U: 2 ≑	V: 2 🜩
Default values for the following molecule organic systems.	g settings have been op	otimised for small
Probe Radius: 1.2 🜩	Grid Spa	acing: 0.3 🜩
Thickness (W) Factor	•	1.60 🜩
	Full Interaction Map	Calculate Surface

Results - ACSALA (002)[0.00]

Atom Properties

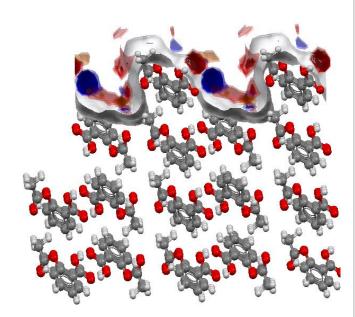
Aromatic

Reset

Density Info (count/Ų)					
H-Bond Acceptors:	0.079	Aromatic Bonds:	0.159		
H-Bond Donors:	0.013	Unsatisfied H-Bond Dono	rs: 0.013		
Topology Info					
Surface Area (Å ²):	159.389	Projected Area (Å ²):	75.498		
Rugosity:	2.111	RMSD:	2.273		
Skewness:	0.052	Kurtosis:	1.729		
Display Options					
Surface colouring:		Atom Properties		~	
Opacity: (%)				100 ≑	
Periodic View		Hide Molecules			

H-Bond Acceptors

Unsatisfied H-Bond Donors


Close

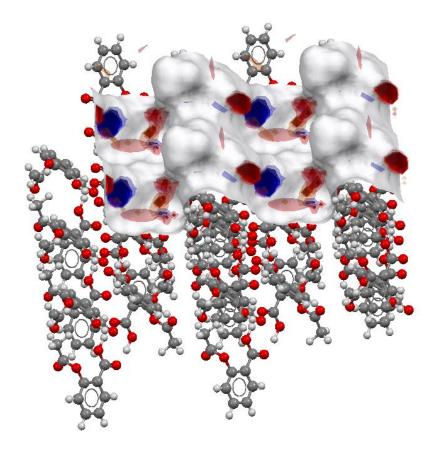
H-Bond Donors

Advance Options

CSD-Particle – FIMs on Surface

CSD-Particle	CSD-Disco	very
Morphol	ogy 🕨 🕨	tom
Slip Plane	es	MAR
Surface A	analysis	

Surface Analysis ACSALA		>
Analyse		
Select surface orientation (hkl) a	and offset (o)	
h: 0 🜩 k: 0 🜩 l: 2 🗧	o: 0.00 🜩	Preview Slab
Show Advanced Options		
Size of Surface:	U: 2 ≑	V: 2 🜩
Default values for the followir molecule organic systems.	ng settings have been o	ptimised for small
Probe Radius: 1.2 🜩	Grid Spa	acing: 0.3 🖨
Thickness (W) Factor		1.60 ≑
	Full Interaction Map	Calculate Surface


Results - ACSALA (002)[0.00]

	Density Info (count	/Å 2)						
				omatic Bonds:		0.450		
	H-Bond Acceptors:					0.159		
	H-Bond Donors:	0.013	Un	satisfied H-Bond Dono	rs:	0.013		
	Topology Info							
	Surface Area (Ų):	159.389		Projected Area (Å ²):	75	.498		
	Rugosity:	2.111		RMSD:		273		
	Skewness:	0.052		Kurtosis:	1.7	729		
		0.002						
Г)isplay Options							
	isping options							
S	urface colouring:			Atom Properties				\sim
c	Dpacity: (%)						100	+
г	Periodic View			Hide Molecules				
L								
	Atom Properties							
	Charge			H-Bond Acceptor	s			
	Aromatic			H-Bond Donors				
				Unsatisfied H-Bo	nd I	Donore		
						JUNUIS		
ſ	Reset					0	lose	_
1	Reser						iuse	_
			_					_

-ull Interaction Map on Surface

CSD-Particle – FIMs on Surface

	CSD-Particle	CSD-Discov	/ery
	Morphology		
ļ	Slip Planes		MAR
	Surface A	Analysis	D

Options Maps Hotspots Map Contour Levels Display first contour with it Display second contour with Display third contour with Hotspots Generate hotspots in the relation	nitial level of 2.0 🔹 th inital level of 4.0 🔹 initial level of 6.0 🐳	Probe Uncharged NH Nitrogen Charged NH Nitrogen RNH3 Nitrogen Alcohol Oxygen Vater Oxygen Oxygen Atom Methyl Carbon C-F Fluorine C-CI Chlorine C-Br Bromine C-Llodine	Colour	
	Calculate Surface Maps	ear Maps & Hotspots Load Maps	Save Maps Close	

https://www.ccdc.cam.ac.uk/Community/educationalresources/

Want to explore more?

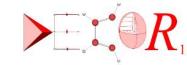
Training and Educational Resources

The wealth of information contained within the Cambridge Structural Database (CSD) extends far beyond a collection of crystal structures. Knowledge derived from these materials informs much of chemistry, biochemistry, and biology. Chemical and structural concepts are often difficult to grasp without real world, interactive examples for students to explore.

The CCDC and our colleagues continually produce educational materials for use in classroom and computer lab settings, or as independent study modules. Many of these materials make use of the Teaching Subset - a freely available set of over 750 structures that can be investigated with the free version of our Mercury visualisation and analysis program. Of course, our database of over one million entries are available for free through our Access Structures portal.

If you are an educator looking for supplementary teaching materials, find out more about the Teaching Database here. If you have developed your own modules using the Cstate would like to share them with the broader community, please contact us at education@ccdc.cam.ac.uk.

To keep up to date with the latest news from education and outreach at the CCDC, sign up for the Education and Outreach Newsletter here.



Information on the Teaching Subset

Access a series of teaching modules for use in the classroom

DECOR: Educational Resources for Teaching Crystallography

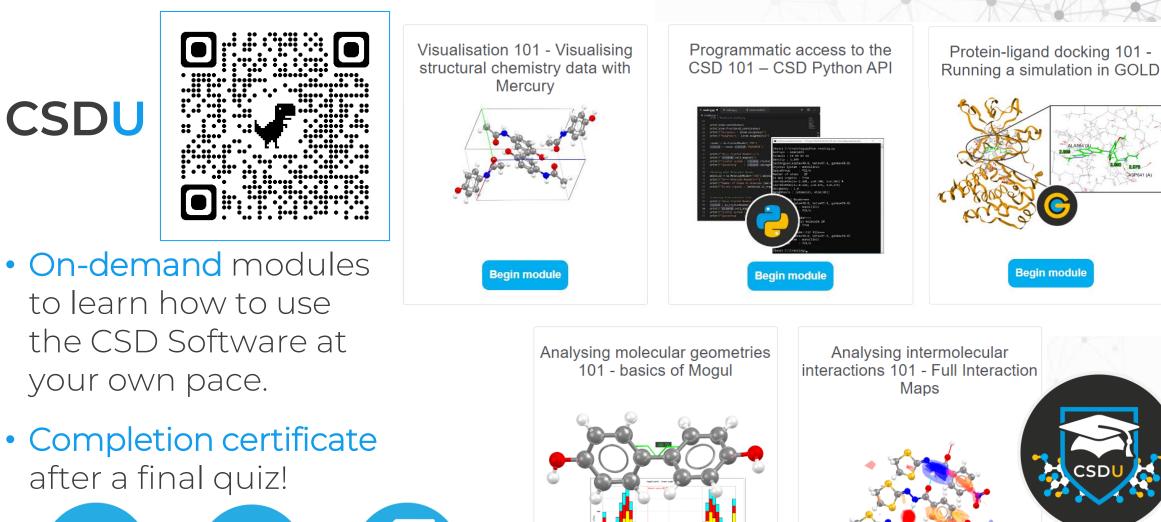
CSDU modules - Explore our on-demand training courses

Register for E&O newsletter

On-demand modules with completion certificate



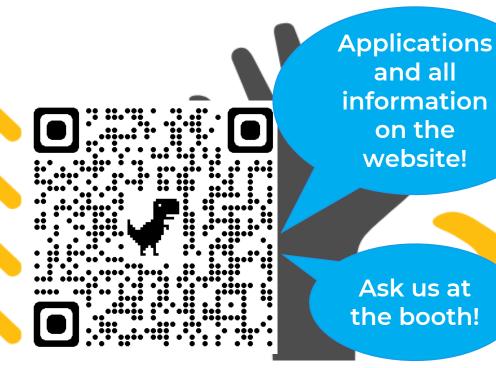
YouTube and LabTube channels


Access fun science activities for kids through the CCDC Home learning page

Watch software training and support videos

Explore the Periodic Table through Crystal Structures

Begin module


https://www.ccdc.cam.ac.uk/Community/educationalresources/CSDU/

CCDC

Begin module

CCDC Engagement Grants

Engage, inspire, share!

 Do you wish to inspire others with your love of crystallography or structural science?

 CCDC Engagement Grants cover costs for you to produce resources or activities to increase schools and public engagement in crystallography and structural science.

https://www.ccdc.cam.ac.uk/Community/awardsandsponsorship/ccdc-engagement-grants/