#### **Guest Speaker:**

# ConQuest to Mercury: From Searching to Data Analysis CCDC Virtual Workshop

#### Catherine Esterhuysen

Professor of Physical Chemistry

Stellenbosch University

Stellenbosch



advancing structural science

October 2024

### Learning outcomes for today

- How to construct a CSD search using ConQuest.
- How to define 3D parameters in ConQuest searching.
- How to export ConQuest results to Mercury
- How to analyse results using the Data Analysis module.
- Tips and tricks for effective searching in ConQuest .
- How this functionality has been used by global researchers through the exploration of recent case studies.



#### Agenda

We will make the recording available to you in the next few days.

- Introduction to the CSD
- Show One: Research exploring Hydrogen and Halogen bonding
- Show One: Introduction and demonstration of ConQuest and Mercury
- *Try One*: Hands-on examples
- *Explore More:* More advanced tips and tricks and case-studies
- *Explore More*: Quiz and Summary
- Extra time: More time for hands on and Q&A

After the session you can earn a completion certificate for today by taking the test.

#### The Cambridge Structural Database



- Every published structure
  - Inc. ASAP & early view
  - CSD Communications
  - Patents
  - University repositories
  - Thesis
- Every entry enriched and annotated by experts
- Discoverability of data and knowledge
- Sustainable for over 59 years
- A trusted CoreTrustSeal repository



Certified as Trustworthy by CoreTrustSeal

### Inside the Cambridge Structural Database

The CSD is a database of all the published organic and metal-organic experimental crystal structures







MOF Dimensionality

- 1D
- 2D
- 3D



Teaching

Drugs

#### **CSD Subsets**

Groups of structures that may be more difficult to find in CSD from searching alone



- Easy access to the most relevant structures.
- Using our in-house and external expertise.
- Convenient starting point for research and analysis.

Hydrates









**ADPs** 



# Exploring the CSD

- >1 million structures
  - > 94M 3D coordinates
- > 28 million bond lengths
  - > 2M unique distributions
- > 40 million valence angles
  - > 3M unique distributions
- > 14 million torsion angles
  - > 800K unique distributions
- > 2 million rings
  - > 400K unique distributions
- > 2 million hydrogen bonds
  - >30 million Isostar contacts

#### Chemistry in the CSD

Number of structures containing certain chemical groups



Images and graphics created using the CSD Python API and Flourish

### The CSD Portfolio



Medicinal & Computational Chemists Crystallographers & Structural Biologists Solid Form & Crystallisation Scientists Functional Materials Scientists Educators Industry and Academia

### Agenda

We will make the recording available to you in the next few days.

- Introduction to the CSD
- Show One: Research exploring Hydrogen and Halogen bonding
- Show One: Introduction and demonstration of ConQuest and Mercury
- *Try One*: Hands-on examples
- *Explore More*: More advanced tips and tricks and case-studies
- *Explore More*: Quiz and Summary
- *Extra time*: More time for hands on and Q&A



### Agenda

We will make the recording available to you in the next few days.

- Introduction to the CSD
- Show One: Research exploring Hydrogen and Halogen bonding
- Show One: Introduction and demonstration of ConQuest and Mercury
- *Try One*: Hands-on examples
- *Explore More*: More advanced tips and tricks and case-studies
- *Explore More*: Quiz and Summary
- *Extra time*: More time for hands on and Q&A



#### Structure searching



### What is ConQuest?

- Enables search and retrieval of information from the CSD
- Provides full range of text / numeric database search options
- More complex search functionality includes:
  - Chemical structure searching
  - 3D Geometrical searching
  - Intermolecular non-bonded contact searching





# ConQuest: Opening and search options File menus



| CCDC ConQuest (1)        | — <u> </u>             | × |
|--------------------------|------------------------|---|
| File Edit Options View D | Jatabases Kesults Help | _ |
| Build Queries Combine    | Tab options/views      |   |
| Draw                     |                        |   |
| Peptide                  |                        |   |
| Author/Journal           |                        |   |
| Name/Class               |                        |   |
| Elements                 |                        |   |
| Formula                  |                        |   |
| Space Group              |                        |   |
| Unit Cell                |                        |   |
| Z/Density                |                        |   |
| Experimental             |                        |   |
| All Text                 |                        |   |
| Refcode (entry ID)       |                        |   |
|                          |                        |   |
|                          |                        |   |
|                          |                        |   |
| Search Reset             | Search options         |   |

#### How to search in ConQuest

Search

Reset

**1.** Build a Query: **2.** Click search and select 3. Visualise and analyse Build Queries Combine What do you filters: do you need to results: what can you learn want to find? restrict your search? from this data? Draw Peptide CCDC ConQuest (1) : search3 [Search] Author/Journal File Edit Options View Databases Results Help Search Setup × Build Queries Combine Queries Manage Hitlists View Results Name/Class Filters Advanced Options Search Name: search1 All Text Refcode: COVZAR CSD version 5.41 updates (Mar 2020) 3D coordinates determined Author/Journa Available Databases: Show Updates separately Elements Chemica  $\square$  R factor  $\textcircled{O} \le 0.05$ CSD version 5.43 (November 2021) + 1 update Crysta  $\Omega <= 0.075$ Experimenta Formula Diagrai C <= 0.1</p> Space Group Only 
Non-disordered O Disordered Unit Cell No errors You can search complete database(s) or a subset Z/Density (e.g., hits found in a previous search) ☐ Not polymeric Select Subset Clear Subset No ions Experimental Only 
 Single crystal structures Single query being used. Search will find structures: All Text C Powder structures where this query is true: □ Only ③ Organics Refcode (entry ID) Query F\_C-----SO C Organometallic Start Search Cancel Reset Use as Query... Detach Show terminal carbons

CCDC

 $\Box$   $\times$ 

\_

Analyse Hitlist

COVZAR

**X DUBROK** 

V DUCTED

X LOYFAJ

**NOTMER** 

VOZRUA

WOWWUD

VOYLUW

VOYMAD

ABOLAG

ABOLEK

ABOLIO

ABOLUA

ACFCUA

ACFCUB

<<

965 hits 100%

Stop Search

>>

COVZAR



### ConQuest – Draw/Structure search





#### Left click in space to add an atom



Left click and drag from an atom to attach an atom



Right click on an atom or bond to edit or add extra properties to it



## **3D** searching



- . Draw your substructure
- 2. Click Add 3D
- 3. Select parts of the structure you are interested in
- 4. Define the parameters you want to analyse
- 5. Search or store your query
- 6. View the results
- 7. Analyse the hit list

| CCDC ConQuest (1                    | 1) : search11 [Search]                      |                                                     | - 0                            | ×                                          |                                               |                                               |                    |
|-------------------------------------|---------------------------------------------|-----------------------------------------------------|--------------------------------|--------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------|
| Build Queries C                     | ombine Queries Manage Hitlists View Results | \                                                   |                                |                                            |                                               |                                               |                    |
| All Text<br>Author/Journal          | Refcode: JUZTOQ                             | CSD version 5.42 updates (Feb 2021)                 | JUZTOQ<br>Analyse Hitlist      |                                            |                                               | Searc<br>highlighte                           | ch<br>ed in 2D     |
| Chemical<br>Crystal<br>Experimental | NHCOOtBU TBUOOC                             | Parameters<br>B2<br>2.603                           | JUZTOQ                         | Visualise S<br>Analyse D                   | itructures<br>ata                             | Parame                                        | eters              |
| Diagram<br>3D Visualiser            |                                             | C 2.603<br>VH <sub>2</sub> AVG2                     |                                | Select All<br>Deselect A                   | AII                                           | display                                       | yed                |
| CSD Internals<br>Search Overview    |                                             | 2.603<br>MIN2<br>2.603                              |                                | Invert Sele                                | ection                                        |                                               | – 🗆 X              |
|                                     | он си он он                                 | о <u>МАХ2</u><br>си-си-он 2.603                     | ✓ ACACC<br>✓ ACACC<br>✓ ACACC  | pe:Mercury data fi                         | Select the items you wish to i                | include from the choices below                | N                  |
|                                     |                                             |                                                     |                                | clude Defined Para<br>al data<br>-factor   | meters                                        | 🗍 Space Gp. Number                            | No. of Coordinates |
|                                     |                                             |                                                     | ✓ ACURC □ Z<br>✓ ACURC Cell da | Value<br>ata                               | ☐ Z Prime                                     | ☐ Study Temp.<br>☐ c                          | Calc. Density      |
|                                     | NH. <sub>COOtBu</sub> tBuOOC                | 2)<br>H                                             |                                | lpha<br>educed Cell a<br>educed Cell Alpha | Beta     Reduced Cell b     Reduced Cell Beta | Gamma<br>Reduced Cell c<br>Reduced Cell Gamma | Cell Volume        |
|                                     |                                             |                                                     |                                | ublication Year                            | Unique Chemical Units                         | Multiplier Sum                                | Compound Name      |
|                                     | Multiple Hits: Show 1 b of 2                | ✓     Show Parameters       Use as Query     Detach | 100%<br>Stop Search            |                                            | 0.70                                          | CC                                            |                    |

## Data analysis



| Data Analysis       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                      |                 |                    |                               |                 |             |          |        | A A          |              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------|-----------------|--------------------|-------------------------------|-----------------|-------------|----------|--------|--------------|--------------|
| lile Qptions<br>arch11 Spreadsheet 1 8 2 4 2 4 2 4 2 4 2 5 2 5 2 5 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 🕑 Data Analy               | /sis                 |                 |                    |                               |                 |             |          | -      | · 🗆          | $\times$     |
| arch11 Spreadsheet 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ile Options                |                      |                 |                    |                               |                 |             |          |        |              |              |
| Ele       Tools       Descriptors       Display       Selection       Plots       Statistics         Find identifier       Identifier       Indext       Identifier       Id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | earch11 Sprea              | dsheet 1             |                 |                    |                               |                 |             |          |        | 6            | ×            |
| Elle       Tools       Descriptors       Display       Sglection       Plots       Statistics         Find identifier       Find next         Identifier       Find next         identifier       Identifier       Find next         search11[U2TVQ1]       JUZT0Q       11       2.6180       2.6180       2.6180         search11[U2TVQ1]       JUZT0Q       11       2.26300       2.6800       2.6800         search11[U2TVQ1]       JUZT0Q       11       1       2.6500       2.6190       2.6190         search11[U2TVQ13       JUZT0Q       11       1       2.6500       2.6400       2.6400         search11[U2TVQ13       JUZT0Q       11       1       2.6500       2.6400       2.6400         search11[UVVE15       LUVVE15       11       1       2.6300       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6100       2.6130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | carenti oprea              | usheet i             |                 |                    |                               |                 |             |          |        |              |              |
| Find identifier       Find next         isearch11[UVTUT0]       CUVVUT       1       2.6180       2.6180       2.6180         isearch11[UZT0Q1       JUZT0Q       11       1       2.6630       2.6630       2.6630         isearch11[UZT0Q2]       JUZT0Q       11       1       2.6590       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6300       2.5810       2.5810       2.5810       2.5810       2.5810       2.5810       2.5810       2.5810       2.5810       2.6810       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>F</u> ile <u>T</u> ools | Des <u>c</u> riptors | <u>D</u> isplay | S <u>e</u> lection | <u>P</u> lots <u>S</u> tatist | ics             |             |          |        | 0            | 25           |
| Find identifier       NAME       Query       Fragment       AVG2       B2       MAX2         search11[U2TV010       CUYVUT       11       1       2.6180       2.6180         search11[U2TOQ1       JUZTOQ       11       2       2.630       2.6030         search11[UZTOQ2       JUZTOQ       11       2       2.6190       2.6190         search11[UZTOQ2       JUZTOQ       11       2       2.630       2.630         search11[UZTOQ2       JUZTOQ       11       2       2.6190       2.6190         search11[UVTUB       UVYED2       11       1       2.6400       2.6400         search11[UVVCD6]       DVYCLAC06       11       1       2.6130       2.6130         search11[UVCUC]8       UJOKUC       11       1       2.6130       2.6130         200       Search11[UVCUC]8       UJOKUC       11       1       2.6130       1         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                      | - · ·           |                    |                               |                 |             |          |        |              |              |
| Indidentifier       NAME       Query       Fragment       AVG2       B2       MAX2         search11[CUYVUT]0       CUYVUT       11       1       2.6180       2.6180       2.6030         search11[UZTOQ1       JUZTOQ       11       2       2.6190       2.6190       2.6190       2.6190       2.6190       2.6190       2.6190       2.6190       2.6190       2.6190       2.6190       2.6190       2.6190       2.6190       2.6190       2.6190       2.6190       2.6190       2.6190       2.6190       2.6100       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6290       2.6200       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6400       2.6130       2.6130       2.6130       2.6130       2.6130       2.6130       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                      |                 |                    |                               |                 |             |          |        |              |              |
| Identifier         NAME         Query         Fragment         AVG2         B2         MAX2           search11[CUYVUT]0         CUYVUT         11         1         2.6180         2.6180         2.6180           search11[UZTOQ1         JUZTOQ         11         1         2.6030         2.6030         2.6030           search11[UZTOQ2         JUZTOQ         11         1         2.6180         2.6180         2.6180           search11[UZTOQ12         JUZTOQ         11         1         2.6290         2.6290         2.6290         2.6290         2.6290         2.6290         2.6290         2.6290         2.6290         2.6290         2.6290         2.6290         2.6290         2.6290         2.6290         2.6290         2.6290         2.6290         2.6290         2.6290         2.6290         2.6290         2.6300         2.6300         2.6300         2.6300         2.6300         2.6300         2.6300         2.6300         2.6300         2.6300         2.6300         2.6300         2.6300         2.6300         2.6130         V           search11[VVCLAC06]7         PYCUAC06         11         1         2.6130         2.6130         V         V         V         V         V         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Find identifier            |                      |                 |                    |                               | Find next       |             |          |        |              |              |
| Identifier         NAME         Query         Fragment         AVG2         B2         MAX2           search11/UZTOQ1         JUZTOQ         11         1         2.6180         2.6180         2.6180           search11/UZTOQ1         JUZTOQ         11         1         2.6030         2.6030         2.6030           search11/UZTOQ1         JUZTOQ         11         1         2.6190         2.6190         2.6190           search11/UZTOQ2         JUZTOQ         11         1         2.6290         2.6290         2.6290           search11/UZTOQ1         JUZTOQ         11         1         2.6290         2.6400         2.6400           search11/UVFU5         LUYVE         11         1         2.6530         2.6530         2.6400           search11/UVCVG8         UJOKUC         11         1         2.6130         2.6400         2.6400           search11/UVCVG8         UJOKUC         11         1         2.6130         2.6130         2.6130           search11/USVCVG8         UJOKUC         11         1         2.6130         2.6130         2.6130           search11/USVCVG8         Mouse         Display         Selection         Plots         Statistics <td< td=""><td></td><td>1.1</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | 1.1                  |                 |                    |                               | _               |             |          |        |              |              |
| search11/UZTOQ1 JUZTOQ 11 1 2,26180 2,6180 2,6190<br>search11/UZTOQ2 JUZTOQ 11 2,2630 2,6030 2,6030<br>search11/UZTOQ2 JUZTOQ 11 2,2630 2,2630 2,2630<br>search11/UZTOQ2 LOVYED2 11 1 2,2640 2,2640<br>search11/LOVYEJ5 LUVVEJ 11 1 2,2630 2,2630 2,6530 2,6530<br>search11/UVEJ5 LUVVEJ 11 1 2,2630 2,2630 2,6400<br>search11/UVEJ6 UJOKUC 11 1 2,2610 2,6130 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,6400 2,640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | Identifier           |                 |                    | NAME                          | Query           | Fragment    | AVG2     | B2     | MAX2         |              |
| search11/UZTOQ1     JJZTOQ     11     2.6030     2.6030     2.6030       search11/UZTOQ2     JJZTOQ     11     2     2.6190     2.6190       search11/UZTOQ12     JJZTUW     11     1     2.6290     2.6290       search11/UZTOQ14     LOYVED02     11     1     2.6300     2.6460       search11/UVTE02/4     LOYVED02     11     1     2.6300     2.6400       search11/UVTE02/4     LOYVED02     11     1     2.6300     2.6400       search11/UVTE02/4     LOYVED02     11     1     2.6300     2.6400       search11/UVTE02/4     LOVVED02     11     1     2.6300     2.6400       search11/UVTE02     UVVED02     11     1     2.6300     2.6400       search11/UVCUQC067     PYCUAC06     11     1     2.6130     2.6130       search11/USKU28     UOKUC     11     1     2.6130     2.6130       search11/Histogram 1     search11 Histogram 2     search11     search11     Statistics     Search11       100     100     100     100     100     2.600     2.700     2.800     3.000     3.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | search                     | 11 CUYYUT 0          |                 | CUYY               | UT                            | 11              |             | 1 2.6180 | 2.6180 | 2.6180       |              |
| search11/UZ1UV[3<br>search11/UZ1UV[3<br>search11/UZ1UV[3<br>search11/UZ1UV[3<br>search11/UZ1UV[3<br>search11/UZ1VV[5]<br>LUVVEJ<br>the control of the contr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | search                     |                      |                 | JUZIC              | Q                             | 11              |             | 1 2.6030 | 2.6030 | 2,6030       |              |
| search 11 [ILOVYED02]4<br>search 11 [ILOVYED02]4<br>search 11 [ILOVYED02]4<br>search 11 [ILOVYED02]4<br>search 11 [ILOVYED02]4<br>search 11 IDYCLUAC067<br>search 11 IDYCLUAC067<br>search 11 IDYCLUAC067<br>search 11 IDYCLUAC067<br>search 11 IBYCLUAC067<br>search 11 IBYCLUAC07<br>search 11 IBYCLUAC07<br>sear                                                                                                                                                                                                                                                                                                                                                                                                                       | search                     |                      |                 | JUZIC              | Q                             | 11              |             | 2 2.6190 | 2.0190 | 2.6190       |              |
| search 11 [LUYVEJ/4 LUYVEJ 11 1 2.6400 2.6400 2.6400<br>search 11 [LUYVEJ 11 1 2.6400 2.6400 2.6400 2.6400 search 11 [LUVCJ 3 LUYVEJ 11 1 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6130 2.6100 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | search                     |                      |                 | 10210              | 5000                          | 11              |             | 1 2.0290 | 2.0290 | 2.0290       |              |
| search11 DVCUAC06 7<br>search11 PVCUAC06 7<br>search11 PVCUAC06 7<br>search11 UDVKUC 8<br>search11Histogram 1<br>search11Histogram 2<br>Eile Descriptors Mouse Display Sglection Plots Statistics<br>Eile Descriptors Mouse Display Sglection Plots Statistics<br>Comparison of the statistics of the statisti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | search                     |                      |                 | LUVY               |                               | 11              |             | 1 2.0400 | 2,0400 | 2.0400       |              |
| search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/IJVCUAC06/7<br>search11/                                                                                                                                                                                                                                                                                                      | search                     |                      |                 |                    |                               | 11              |             | 1 2.0000 | 2.0350 | 2,000        |              |
| search11Histogram 1 search11Histogram 2<br>search11Histogram 2 search11Histogram 2 searc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | search                     |                      | 7               | DVCU               | AC06                          | 11              |             | 1 2.3010 | 2.3010 | 2.3010       |              |
| search11 Histogram 1 search11 Histogram 2<br>Elle Descriptors Mouse Display Sglection Plots Statistics<br>350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | search                     |                      |                 | LIIOKI             |                               | 11              |             | 1 2,6130 | 2 6130 | 2 6130       | $\mathbf{v}$ |
| search11Histogram 1 search11Histogram 2<br>Eile Descriptors Mouse Display Selection Plots Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Jearen                     | nosonoclo            |                 | 0,010              |                               |                 |             | 1 2.0150 | 2.0150 | 2.0150       |              |
| search11 Histogram 1 search11 Histogram 2<br>Eile Descriptors Mouse Display Selection Plots Statistics<br>350<br>300<br>150<br>100<br>150<br>100<br>100<br>100<br>100<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                      |                 |                    |                               |                 |             |          |        |              |              |
| search11 Histogram 1 search11 Histogram 2<br>Eile Descriptors Mouse Display Selection Plots Statistics<br>350<br>300<br>150<br>100<br>100<br>100<br>100<br>100<br>100<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                      |                 |                    |                               |                 |             |          |        |              |              |
| Eile Descriptors Mouse Display Selection Plots Statistics<br>300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | search11 Hist              | ogram 1              | search11 Hist   | ogram 2            |                               |                 |             |          |        |              |              |
| Eile Descriptors Mouse Display Selection Plots Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | earch11 Histo              | gram 2               |                 |                    |                               |                 |             |          |        | 6            | ×            |
| Eile Descriptors Mouse Display Sglection Plots Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                      |                 |                    |                               |                 |             |          |        |              |              |
| 350<br>300<br>250<br>200<br>150<br>100<br>50<br>0<br>2.500<br>2.600<br>2.700<br>2.800<br>2.900<br>3.000<br>3.000<br>3.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>F</u> ile [             | <u>D</u> escriptors  | <u>M</u> ouse   | <u>D</u> isplay    | S <u>e</u> lectio             | n <u>P</u> lots | Statistics  |          |        | <b>A</b>     | Q .          |
| $350 \\ 300 \\ 250 \\ 200 \\ 150 \\ 100 \\ 50 \\ 0 \\ 2.500 \\ 2.600 \\ 2.700 \\ 2.800 \\ 2.900 \\ 3.000 \\ 3.000 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\ 3.100 \\$                                                                                                                                                                                                                                                                                                                                       |                            |                      |                 |                    |                               |                 |             |          |        |              |              |
| 350 - 300 - 250 - 200 - 200 - 150 - 200 - 150 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                          |                      |                 |                    |                               |                 |             |          |        |              |              |
| 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300 = 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250 -                      |                      |                 |                    |                               |                 |             |          |        |              |              |
| $300 = \frac{1}{250} = \frac{1}{200} = \frac{1}{150} = \frac{1}{2.500} = \frac{1}{2.600} = \frac{1}{2.700} = \frac{1}{2.800} = \frac{1}{2.900} = \frac{1}{3.000} = $ | 350 -                      |                      |                 |                    |                               |                 |             |          |        |              |              |
| 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250 - 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 300 -                      |                      |                 |                    |                               |                 |             |          |        |              |              |
| 250 - 200 - 150 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500 1                      |                      |                 |                    |                               |                 |             |          |        |              |              |
| 200 = 150 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250 -                      |                      |                 |                    |                               |                 |             |          |        |              |              |
| $200 = \frac{150}{150} = \frac{1}{2.500} = \frac{1}{2.600} = \frac{1}{2.700} = \frac{1}{2.800} = \frac{1}{2.900} = \frac{1}{3.000} = \frac{1}{3.0$ |                            |                      |                 |                    |                               |                 |             |          |        |              |              |
| 150<br>150<br>100<br>50<br>0<br>2.500 2.600 2.700 2.800 2.900 3.000 3.100<br>AVG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200 -                      |                      |                 |                    |                               |                 |             |          |        |              |              |
| 150 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 1000 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                      |                 |                    |                               |                 |             |          |        |              |              |
| 100<br>50<br>0<br>2.500 2.600 2.700 2.800 2.900 3.000 3.100<br>AVG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 150 -                      |                      |                 |                    |                               |                 |             |          |        |              |              |
| 100<br>50<br>0<br>2.500 2.600 2.700 2.800 2.900 3.000 3.100<br>AVG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                      |                 |                    |                               |                 |             |          |        |              |              |
| 50<br>0<br>2.500 2.600 2.700 2.800 2.900 3.000 3.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100 -                      |                      |                 |                    |                               |                 |             |          |        |              |              |
| 50<br>0<br>2.500 2.600 2.700 2.800 2.900 3.000 3.100<br>AVG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =                          |                      |                 |                    |                               |                 |             |          |        |              |              |
| 0 <sup>-1</sup><br>2.500 2.600 2.700 2.800 2.900 3.000 3.100<br>AV/G2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50 -                       |                      |                 |                    |                               |                 |             |          |        |              |              |
| 0 <sup>-2</sup><br>2.500 2.600 2.700 2.800 2.900 3.000 3.100<br>AV/G2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                      |                 |                    |                               |                 |             |          |        |              |              |
| 2.500 2.600 2.700 2.800 2.900 3.000 3.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                          |                      |                 |                    |                               | · · · · ·       | <del></del> |          |        | <del>-</del> | _            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.                         | 500                  | 2.600           | 2.700              | ) 2.                          | 800             | 2.900       | 3.000    | 3.1    | 00           |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                          |                      | 2.000           | 2.7.00             | . 2.                          | AVG2            |             | 2.000    | 0.1    |              |              |

#### **Mercury Overview**

#### More advanced functionality to analyse and learn from structures

Х

😵 AABHTZ (P-1) - Mercury

File Edit Selection Display Calculate CSD-Community CSD-Core CSD-Materials CSD-Theory CSD-Particle CSD-Discovery CSD Python API Help



#### Show One: Demo of ConQuest and Mercury

- In this demo we will use ConQuest and Mercury to follow one of Catherine's investigations in *Cryst. Growth Des.* 2024, 24, 2, 859–870.
  - Construct a 3D search on ConQuest.
  - Export results to Mercury.
  - Use the Data Analysis tool to explore Hydrogen Bonded R<sup>2</sup><sub>2</sub>(8) Rings.

We will make the recording available to you in the next few days.



3D Options dialog box displayed

Cancel OK

3D Limits and Ontion

RENAME: N

PARAMETER: ANG3 (Angl

All Paramete

BOBLOX COCVEZ COCVEZ

Catharine Esterhuysen, *Cryst. Growth Des. 2024, 24, 2, 859–870*. DOI: <u>10.1021/acs.cgd.3c01343</u>

### Try One: hands-on exercise

We will make the recording available to you in the next few days.

#### It's your turn!

- Try the example from the handout.
- Your tutors are on hand to help you!
- To ask questions during this time type a message in the chat box.

These exercises follow research in another recent article:

 J. Echeverría and S. Alvarez, *Cryst. Growth Des.*, 2024, 24, 4743–4747. DOI: 10.1021/acs.cgd.4c00335

https://info.ccdc.cam.ac.uk/2024-autumn-virtual-workshop



## Agenda

We will make the recording available to you in the next few days.

- Introduction to the CSD
- Show One: Research exploring Hydrogen and Halogen bonding
- *Show One*: Introduction and demonstration of ConQuest and Mercury

REC

- *Try One*: Hands-on examples
- *Explore More:* More advanced tips and tricks and case-studies
- *Explore More*: Quiz and Summary
- *Extra time:* More time for hands on and Q&A



### Intermolecular interactions and packing

- To go further you can look at the packing environment of the molecules using a range of tools.
- Using the CSD for context (unusual hydrogen bond parameters for example) as well as enabling comparison of structures.







#### **Searching within Mercury**



#### **Crystal Packing Feature Search**

- Perform a substructure search
- Investigate conformations of molecules or bonded fragments.
- Search for:
  - non-covalent interactions such as π-π or hydrogen bond interactions.
  - particular spatial arrangements of functional groups.
  - particular spatial arrangements of molecules.



#### Searching within Mercury: Crystal Packing Feature

- Pick a feature from the current structure in Mercury
- Search the whole CSD or within ConQuest hitlist





#### **Crystal Packing Feature : Selecting a Feature**





### **Crystal Packing Feature: Selecting Options**



CCDC

Cancel

C

 $\times$ 

#### **Crystal Packing Feature: Selecting Parameters**



#### Crystal Packing Feature: Selecting Search Structures



#### **Crystal Packing Feature: Launching Search**

| ile Edit Selection Display Calculate CSD-  | Community CSD-Core CSD-Materials CSD-Theory CSD-Particle CSD-Discovery | CSD Python API Help                                                     |                            |                     |
|--------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------|---------------------|
| Picking Mode: Pick Atoms                   | Clear Measurements D Q                                                 | with Atom Label 🗸                                                       |                            |                     |
| Style: Ball and Stick 🗸 Colour: by Element | ✓ Manage Styles Small Ball and Stick ✓ Atom selections:                | <ul> <li>Select by SMARTS: [c]</li> </ul>                               |                            |                     |
| Animate Default view: b 🗸 a b              | o c a* b* c* x- x+ y- y+ z- z+ x-90 x+90 y-90 y+90 z-90 z+9            | $\leftarrow \rightarrow \downarrow \uparrow$ zoom- zoom+ Disorder: None |                            |                     |
|                                            |                                                                        |                                                                         |                            | Structure Navigator |
|                                            |                                                                        |                                                                         |                            |                     |
|                                            |                                                                        |                                                                         |                            | BOBLOX Find         |
|                                            | NT THE T                                                               | Packing Feature Search Wizard                                           | ×                          | Crystal Structures  |
|                                            | Name the search                                                        |                                                                         |                            | BOBLOX              |
|                                            |                                                                        | Enter search name                                                       |                            | COCVEZ              |
|                                            | and run it                                                             |                                                                         |                            | COCVEZ              |
|                                            |                                                                        | Packing feature name: amide dimer                                       |                            | COFBEI              |
|                                            |                                                                        | Search name: hydantoin amide dimer                                      |                            | COFBEI              |
|                                            |                                                                        |                                                                         |                            | DOCJOY              |
|                                            | T T                                                                    |                                                                         |                            | FITMAA              |
|                                            |                                                                        |                                                                         |                            | FITMAA              |
|                                            | L 123.16                                                               |                                                                         |                            | FIXSIS              |
|                                            |                                                                        |                                                                         |                            | FIXSIS              |
|                                            |                                                                        |                                                                         |                            | HIWSIT              |
|                                            |                                                                        |                                                                         |                            | HIYDIG              |
|                                            |                                                                        |                                                                         |                            | HOBDEL              |
|                                            |                                                                        |                                                                         |                            | HOBDEL              |
|                                            |                                                                        |                                                                         | Park Stat Start            | HOBDEL01            |
|                                            |                                                                        |                                                                         | < Back Start Search Cancel | HOBDIP              |
|                                            |                                                                        |                                                                         |                            | HOCGOZ              |
|                                            |                                                                        |                                                                         |                            | HOFNOJ              |
|                                            |                                                                        |                                                                         |                            | KIZBAA01            |
|                                            |                                                                        |                                                                         |                            | LITMAG              |
|                                            |                                                                        |                                                                         |                            | LITMAG              |
|                                            |                                                                        |                                                                         |                            | LIIMEK              |
| play Options                               |                                                                        |                                                                         | r ×                        | LOBZIP              |
| Display                                    |                                                                        | Ontions                                                                 |                            |                     |
|                                            |                                                                        |                                                                         |                            | << )>>>             |
| Packing     Short Contact < (sum )         | of vdW radii - 0.15A)                                                  | Contacts Show hydrogens Dep                                             | th cue                     | Tree View           |
| Asymmetric Unit H-Bond User def            | ined                                                                   | More Info ▼ Show cell axes Z-C                                          | lipping                    |                     |
| Auto centre                                |                                                                        | Powder                                                                  | eo                         | Multiple Structures |
|                                            |                                                                        | - emucini                                                               |                            |                     |

#### **Crystal Packing Feature: Viewing Results**

| king Mode: Pick At  | oms          |              | ~ Cle        | ar Measure   | ments 🕒    |           | Show Labels for All atom | is v    | ith Atom Labe | 1 v           |                 |      |                          |                   |
|---------------------|--------------|--------------|--------------|--------------|------------|-----------|--------------------------|---------|---------------|---------------|-----------------|------|--------------------------|-------------------|
| /le: Ball and Stick | Construction |              |              | ÷ ••         | - · ·      |           |                          |         | t by SN       | IARTS: [c]    |                 |      |                          |                   |
| Animate De          | Searches     |              |              |              |            |           |                          |         | ↓ ′           | zoom- zoom+   | Disorder: None  |      |                          |                   |
|                     | hydantoin am | de dimer     |              |              |            |           |                          | ~ Optic | ns 🔻          |               | 1               |      | Structure Navigator      | 8,                |
|                     | 2756 hits    | RMS          | N2_H22_0     | H22_01_      | C N1_H11_0 | 03_C17_N2 |                          |         |               |               |                 |      | BOBLOX                   | Find              |
|                     | BOBLOX       | 0            | 171.63       | 124.629      | 167.367    | 123.157   |                          |         |               |               |                 |      | DODEOX                   |                   |
|                     | BOBLOX       | 0            | 171.63       | 124.629      | 167.367    | 123.157   |                          |         |               |               |                 |      | Crystal Structures       | Spacegro          |
|                     | COCVEZ       | 0.12         | 169,153      | 116.775      | 169.153    | 126.891   |                          |         |               |               |                 |      | BOBLOX                   | P21/n             |
|                     | DOCION       | 0.12         | 109.103      | 110.775      | 164 927    | 120.891   |                          |         |               |               |                 |      | BOBLOX                   | P21/n             |
|                     | DOCIOY       | 0.105        | 151.040      | 111.44       | 164.027    | 125,459   |                          |         |               |               |                 |      | COCVEZ                   | P-1               |
|                     | DOCION       | 0.165        | 151.040      | 111.44       | 164.027    | 125.439   |                          |         |               |               |                 | 9 64 | COCVEZ                   | P-1               |
|                     | DOCION       | 0.165        | 151.846      | 111.44       | 164.827    | 125.439   |                          |         |               |               |                 |      | COFBEI                   | P-1<br>D-1        |
|                     | FEXI LITO1   | 0.003        | 167 873      | 127.838      | 167.873    | 123.083   |                          |         |               |               |                 |      | COHVOO                   | P-1<br>D21        |
|                     | FITMAA       | 0.18         | 172 327      | 112 508      | 164 478    | 122 427   |                          |         |               |               |                 | . /  | DOCION                   | C2                |
|                     | FITMAA       | 0.18         | 172,327      | 112,508      | 164.478    | 122.427   |                          |         |               |               |                 | _    | DOCIOY                   | (2                |
| -                   | FIXSIS       | 0.155        | 166,962      | 117.073      | 165,162    | 127.071   |                          |         |               |               |                 |      | DOCIOY                   | 02                |
|                     | FIXSIS       | 0.155        | 166.962      | 117.073      | 165,162    | 127.071   |                          |         |               |               |                 |      | DOCIOY                   | 02                |
|                     | GOVXIY03     | 0.088        | 172.091      | 123.83       | 172.091    | 123.529   |                          |         |               |               |                 |      | FEXLUT01                 | P21/c             |
|                     | HIYDIG       | 0.097        | 167.746      | 120.998      | 167.746    | 125.496   |                          |         |               |               |                 |      | FITMAA                   | P21               |
| 1                   | HOCGOZ       | 0.101        | 162.637      | 126.424      | 162.637    | 125.294   |                          |         |               |               |                 |      | FITMAA                   | P21               |
|                     | KIZBAA01     | 0.114        | 171.116      | 119.635      | 171.116    | 125.082   |                          |         |               | M             |                 |      | FIXSIS                   | P212121           |
|                     | LITMAG       | 0.125        | 161.782      | 121.12       | 161.782    | 130.994   |                          |         |               |               |                 |      | FIXSIS                   | P212121           |
| <b>U</b>            | LITMAG       | 0.125        | 161.782      | 121.12       | 161.782    | 130.994   |                          |         |               | <u> </u>      |                 |      | GOVXIY03                 | P21/c             |
|                     | MOBHOE       | 0.106        | 170.279      | 119.424      | 170.279    | 125.351   |                          |         |               |               |                 |      | HIWSIT                   | Fdd2              |
|                     | NIXNAN       | 0.116        | 169.915      | 115.561      | 169.915    | 128.154   |                          |         |               |               |                 |      | HIYDIG                   | P-1               |
|                     | NIZPEV       | 0.11         | 172.482      | 118.714      | 172.482    | 124.324   |                          |         |               |               |                 |      |                          |                   |
|                     | NODGIA       | 0.143        | 160.028      | 129.498      | 160.028    | 124.985   |                          |         |               |               |                 |      |                          | >>                |
|                     | PODLON       | 0.163        | 164.427      | 115.398      | 164.427    | 124.833   | $\sim$                   | )non    |               |               |                 |      |                          |                   |
|                     | POLXIB       | 0.17         | 1/3.94       | 114.529      | 1/3.94     | 122.337   | U                        | pen     |               |               |                 | 6.2  | 🗹 Tree View              |                   |
|                     | View Onting  | 0.101        | 103.222      | 177.477      | 161.211    | 125.218   |                          | 1 A A   |               |               |                 |      | <b>—</b>                 |                   |
| 1                   | view Options |              |              |              |            |           | spread                   | dshee   | et of         |               | <b>/</b>        |      | U Multiple Stru          | uctures           |
|                     | Show pack    | ing feature  |              |              |            |           | •                        |         |               |               | 4               | -    | Structures               | i                 |
|                     | Show nega    | tive results |              |              |            |           | searc                    | n resi  | lits          |               | •               |      | Post Search Ontions      | 8 :               |
| •                   | List all mat | ches         |              |              |            | . '       |                          |         |               |               |                 |      | hudentele en ide di      |                   |
|                     |              | S            | preadsheet.  | •            |            |           |                          |         |               |               |                 |      | hydantoin amide di       | mer complete      |
|                     |              |              |              |              |            |           |                          |         |               |               |                 |      | Would you like to:       |                   |
| ay Options          |              |              |              |              |            |           |                          |         |               |               |                 | ₽×   | Save Result              | ts                |
| blay                |              |              |              |              |            |           |                          |         |               | Options       | _               |      | Edit Search              | h                 |
| Packing             | Short Conta  | ict < (sun   | n of vdW rad | dii - 0.15A) |            |           |                          |         | Contacts      | Show hydrog   | ens 🗌 Depth cue |      | Filter Result            | ts                |
| Asymmetric Unit     | H-Bond       | User d       | efined       |              |            |           |                          |         | More Info 🔻   | Show cell axe | s 🗌 Z-Clipping  |      | riter Resul              | Latin .           |
| Auto centre         |              |              |              |              |            |           |                          |         | Powder        | Label atoms   | Stereo          |      | These options are also a | available via the |
| Reset               |              |              |              |              |            |           |                          |         | . official    |               |                 |      | options button located   | at the top righ   |

#### **Crystal Packing Feature: Viewing Spreadsheet**

| cking Mode: Pick A  | toms          |               | ✓ Cle        | ar Measurem  | ents 🕒 🔎 🕵 🗆 Show Labels for A       | ll atoms         | $\sim$ v                 | with Atom La | ibel 🗸      |             |              |     |    |                          |                  |                  |
|---------------------|---------------|---------------|--------------|--------------|--------------------------------------|------------------|--------------------------|--------------|-------------|-------------|--------------|-----|----|--------------------------|------------------|------------------|
| yle: Ball and Stick | P             |               |              | ÷ ••         |                                      | •                |                          | t by         | SMARTS: [c] |             |              |     |    |                          |                  |                  |
| Animate De          | Searches      |               |              |              |                                      |                  |                          | × 🗸          | ↑ zoom- z   | oom+ Disc   | rder: None   |     |    |                          |                  | <u> </u>         |
|                     | hydantoin am  | ide dimer     |              |              |                                      |                  | <ul> <li>Opti</li> </ul> | ons 🔻        |             | 1           |              |     |    | Structure Navigator      | ₽ ×              |                  |
|                     | 2756 hits     | RMS           | N2 H22       | H22 O1 C     | 🚱 Data Analysis                      |                  |                          |              |             |             | _            |     |    |                          |                  | 1                |
|                     | BOBLOX        | 0             | 171.63       | 124.629      | File Ontions                         |                  |                          |              |             |             |              |     |    | BOBLOX                   | Find             |                  |
|                     | BOBLOX        | 0             | 171.63       | 124.629      |                                      | tala atau a Cara |                          |              |             |             |              |     |    | Crystal Structures       | Spacegro         |                  |
|                     | COCVEZ        | 0.12          | 169.153      | 116.775      | nydantoin Spreadsheet I nydantoin an | nide dimer spre  | adsneet i                |              |             |             |              |     |    | BOBLOX                   | P21/n            |                  |
|                     | COCVEZ        | 0.12          | 169.153      | 116.775      | hydantoin amide dimer Spreadsheet 1  |                  |                          |              |             |             |              | 8 × |    | BOBLOX                   | P21/n            |                  |
|                     | DOCJOY        | 0.165         | 151.846      | 111.44       | File Tools Descriptors Display Sel   | action Diots     | Ctatistic                | -            |             |             |              | 0 7 | -  | COCVEZ                   | P-1              |                  |
|                     | DOCJOY        | 0.165         | 151.846      | 111.44       | File loois Descriptors Display Sel   | ection Plots     | Statistic                | .5           |             |             |              |     |    | COCVEZ                   | P-1              |                  |
|                     | DOCJOY        | 0.165         | 151.846      | 111.44       | Find identifier                      |                  |                          | Find nex     | d           |             |              |     | 1  | COFBEI                   | P-1              |                  |
|                     | DOCJOY        | 0.165         | 151.846      | 111.44       |                                      |                  |                          |              | _           |             |              |     |    | COFBEI                   | P-1              |                  |
|                     | FEXLU IO1     | 0.093         | 107.8/3      | 127.838      | Identifier                           | NAME             | rmsd                     | N2_H22_01    | H22_01_C2   | N_H11_03    | O3_C17_N2    | 1   |    | COHVOO                   | P21              |                  |
|                     | FITMAA        | 0.10          | 172,527      | 112,300      | hydantoin amide dimer BOBLOX 0       | BOBLOX           | 0.0000                   | 171.6300     | 124.6290    | 167.3670    | 123.1570     |     |    | DOCIOY                   | 2                |                  |
| -                   | FIXSIS        | 0.15          | 166 962      | 117.073      | hydantoin amide dimer BOBLOX 1       | BOBLOX           | 0.0000                   | 171.6300     | 124.6290    | 167.3670    | 123.1570     |     |    | DOCIOY                   | 0                |                  |
| Q.                  | FIXSIS        | 0.155         | 166.962      | 117.073      | hydantoin amide dimer COCVEZ 2       | COCVEZ           | 0.1200                   | 169.1530     | 116.7750    | 169.1530    | 126.8910     |     |    | DOCION                   | 02               |                  |
|                     | GOVXIY03      | 0.088         | 172.091      | 123.83       | hydantoin amide dimer[COCVE2]3       | COCVEZ           | 0.1200                   | 169.1530     | 116.7750    | 169.1530    | 126.8910     |     |    | FEXLUT01                 | P                |                  |
|                     | HIYDIG        | 0.097         | 167.746      | 120.998      | hydantoin amide dimer[DOCJOY]4       | DOCIOY           | 0.1650                   | 151.8460     | 111.4400    | 164.8270    | 125,4390     |     |    | FITMAA                   |                  | ick on a colum   |
| 1                   | HOCGOZ        | 0.101         | 162.637      | 126.424      | hydantoin amide dimer[DOCJOY]5       | DOCIOY           | 0.1650                   | 151,8400     | 111.4400    | 164.827     | 125,4390     |     |    | FITMAA                   |                  | ICK OF a COUTTI  |
|                     | KIZBAA01      | 0.114         | 171.116      | 119.635      | hydantoin amide dimeriDOCIOVI7       | DOCIOY           | 0.1650                   | 151.8460     | 111,4400    | 104.        |              |     |    |                          | P.               | (1)              |
|                     | LITMAG        | 0.125         | 161.782      | 121.12       | hydantoin amide dimer[EEXI UT018     | FEXLUT01         | 0.0930                   | 167,8730     | 127,8380    | 16.         |              |     |    |                          | I In             | the spreadshee   |
| <b>U</b>            | LITMAG        | 0.125         | 161.782      | 121.12       | hydantoin amide dimer/FITMAAI9       | FITMAA           | 0.1800                   | 172.3270     | 112.5080    | 164.47      | 122.4270     |     |    | GOVAITUS                 | - P              |                  |
|                     | MOBHOE        | 0.106         | 170.279      | 119.424      | hydantoin amide dimer/FITMAA/10      | FITMAA           | 0.1800                   | 172.3270     | 112.5080    | 164.4780    | 122.4270     |     |    | HIWSIT                   | f to             | hanalvca raculto |
|                     | NIXNAN        | 0.116         | 169.915      | 115.561      | hydantoin amide dimer FIXSIS 11      | FIXSIS           | 0.1550                   | 166.9620     | 117.0730    | 165.1620    | 127.0710     |     |    | HIYDIG                   |                  | a laiyse result. |
|                     | NIZPEV        | 0.11          | 1/2.482      | 118./14      | hydantoin amide dimer FIXSIS 12      | FIXSIS           | 0.1550                   | 166.9620     | 117.0730    | 165.1620    | 127.0710     |     |    |                          |                  |                  |
| 4                   | NODGIA        | 0.143         | 164.427      | 129,498      | hydantoin amide dimer GOVXIY03 13    | GOVXIY03         | 0.0880                   | 172.0910     | 123.8300    | 172.0910    | 123.5290     |     |    | <<                       | >>               |                  |
|                     |               | 0.105         | 173.0/       | 11/ 520      | hydantoin amide dimer HIYDIG 14      | HIYDIG           | 0.0970                   | 167.7460     | 120.9980    | 167.7460    | 125.4960     |     |    | Tran View                |                  |                  |
| -                   | OIPPLIE       | 0.101         | 163 222      | 122 477      | hydantoin amide dimer HOCGOZ 15      | HOCGOZ           | 0.1010                   | 162.6370     | 126.4240    | 162.6370    | 125.2940     |     |    | Iree view                |                  |                  |
|                     | View Ontions  |               |              |              | hydantoin amide dimer KIZBAA01 16    | KIZBAA01         | 0.1140                   | 171.1160     | 119.6350    | 171.1160    | 125.0820     |     |    | O Multiple Cha           |                  |                  |
|                     | new options   |               |              |              | hydantoin amide dimer/LITMAG/17      | LITMAG           | 0.1250                   | 161.7820     | 121.1200    | 161.7820    | 130.9940     |     |    |                          | ictures          |                  |
| *                   | Show pac      | king feature  |              |              | hydantoin amide dimer[LIIMAG] 18     | LIIMAG           | 0.1250                   | 101./820     | 121.1200    | 101./820    | 130.9940     |     |    | Structures               |                  |                  |
| <b>~</b>            | Show neg      | ative results |              |              | hydantoin amide dimeriviobHOEI19     | MOBHOE           | 0.1000                   | 170.2790     |             | 170.2790    | 125.5510     |     |    |                          |                  |                  |
|                     | □ List all ma | tches         |              |              |                                      |                  |                          |              |             |             |              |     |    | Post Search Options      | 8 ×              |                  |
| <u> </u>            |               |               | nreadsheet   |              |                                      |                  |                          |              |             |             |              |     |    | hydantoin amide di       | mer complete     |                  |
|                     |               |               |              |              |                                      |                  |                          |              |             |             |              |     |    | Would you like to:       |                  |                  |
| play Options        |               |               |              |              |                                      |                  |                          |              |             |             |              |     | 8× | Save Result              | ·s               |                  |
| isplay              |               |               |              |              |                                      |                  |                          |              | Options     |             |              |     |    | 5.Pro                    |                  |                  |
| Packing             | Short Cont    | act < (sur    | n of vdW rad | dii - 0,15A) |                                      |                  |                          | Contacts     | Show        | hydrogens 🗌 | Depth cue    |     |    | Edit Search              | 1                |                  |
| Asymmetric Unit     | H-Bond        | User d        | lefined      |              |                                      |                  |                          | More Info 🔻  | Show        | cell axes   | ] Z-Clipping |     |    | Filter Resul             | ts               |                  |
| Auto centre         |               |               |              |              |                                      |                  |                          | Powder       | 🗌 Label a   | atoms       | Stereo       |     |    | These options are also a | vailable via the |                  |
| Porot               |               |               |              |              |                                      |                  |                          | Powder       |             |             |              |     |    | ontions button located   | at the top right |                  |

#### **Crystal Packing Feature: Analysing Results**

| icking Mode: Pick At | oms            |              | ✓ Cle        | ar Measurer  | ents 街 🔎 🕵 🗄 Disconsecutive Show Labels for All atoms 🚽 with Atom Label 🗸         |             |                          |                  |
|----------------------|----------------|--------------|--------------|--------------|-----------------------------------------------------------------------------------|-------------|--------------------------|------------------|
| tyle: Ball and Stick | le             | -            |              | ÷ ••         | t by SMARTS: [c]                                                                  |             |                          |                  |
| Animate De           | Searches       |              |              |              | ↓ ↑ zoom- zoom+ Disorder: None                                                    |             |                          |                  |
|                      | hydantoin ami  | de dimer     |              |              | ✓ Options ▼                                                                       |             | Structure Navigator      | 8 ×              |
|                      | 2756 hits      | RMS          | N2_H22_C     | H22_01_0     | 😧 Data Analysis — 🗆                                                               | ×           |                          |                  |
|                      | BOBLOX         | 0            | 171.63       | 124.629      | File Options                                                                      |             | BOBLOX                   | Find             |
|                      | BOBLOX         | 0            | 171.63       | 124.629      | hydantoin amide dimer Spreadsheet 1                                               | ā ×         | Crystal Structures       | Spacegrou        |
|                      | COCVEZ         | 0.12         | 169.153      | 116.775      |                                                                                   |             | BOBLOX                   | P21/n            |
|                      | COCVEZ         | 0.12         | 169.153      | 116.775      | File Tools Descriptors Display Selectio Plots tatistics                           | 60          | BOBLOX                   | P21/n            |
|                      | DOCIOY         | 0.105        | 151.840      | 111.44       |                                                                                   |             | COCVEZ                   | P-1              |
|                      | DOCIOY         | 0.105        | 151.846      | 111.44       | Find identifier                                                                   | 64          | COEVEZ                   | P-1<br>D-1       |
|                      | DOCIOY         | 0.165        | 151.846      | 111.44       | Identifier NAME rms N2 H22 O1 H22 O1 C2 N1 H11 O3 O3 C17 N2                       |             | COFBEI                   | P-1<br>D-1       |
|                      | FEXLUT01       | 0.093        | 167.873      | 127.838      | hydantoin amide dimedROBLOXI0 BOBLOX 0.000 17116801 124.6290 167.3670 123.1570    |             | СОНУОО                   | P21              |
|                      | FITMAA         | 0.18         | 172.327      | 112.508      | hydantoin amide dimeriBOBLOXI1 BOBLOX 0.000 171/680 124.6290 167.3670 123.1570    |             | DOCJOY                   | C2               |
|                      | FITMAA         | 0.18         | 172.327      | 112.508      | hudentein envide dimentOOCUE712 COCUE7 0.12 2 160.1690 116.7750 160.1630 126.0010 |             | DOCJOY                   | C2               |
|                      | FIXSIS         | 0.155        | 166.962      | 117.073      | hudustein Countertent 1 Audustein amide dieses History au                         |             | DOCJOY                   | C2               |
|                      | FIXSIS         | 0.155        | 166.962      | 117.073      | nydantoin Spreadsneet 1 nydantoin amide dimer Histogram i                         |             | DOCJOY                   | C2               |
| 1                    | GOVXIY03       | 0.088        | 172.091      | 123.83       | hydantoin amide dimer Histogram 1                                                 | 8 ×         | FEXLUT01                 | P21/c            |
|                      | HIYDIG         | 0.097        | 167.746      | 120.998      | Eila Descriptore Maura Disalau Selaction Blate Statistics                         |             | FITMAA                   | P21              |
|                      | HOCGOZ         | 0.101        | 162.637      | 126.424      | rile Discriptors mouse Display Selection Plots Statistics                         |             | FITMAA                   | P21              |
|                      | KIZBAA01       | 0.114        | 171.116      | 119.635      |                                                                                   |             | FIXSIS                   | P212121          |
|                      | LITMAG         | 0.125        | 161.782      | 121.12       | 150 -                                                                             |             | FIXSIS                   | P212121          |
| -                    | LITMAG         | 0.125        | 101.782      | 121.12       |                                                                                   |             | GOVXIY03                 | P21/c            |
|                      | NIXNAN         | 0.100        | 160 015      | 115 561      |                                                                                   |             |                          | P002             |
|                      | NIZPEV         | 0.11         | 172 482      | 118 714      |                                                                                   | _           | HITDIG                   | 11               |
|                      | NODGIA         | 0.143        | 160.028      | 129,498      | 100 -                                                                             |             |                          |                  |
|                      | PODLON         | 0.163        | 164.427      | 115.398      |                                                                                   |             | <<                       | >>               |
|                      | POLXIB         | 0.17         | 173.94       | 114.529      |                                                                                   |             | Tree View                |                  |
|                      | OIPPUE         | 0.101        | 163.222      | 122.477      |                                                                                   |             |                          |                  |
|                      | View Options   |              |              |              |                                                                                   |             | Multiple Stru            | uctures          |
|                      | 0.0            |              |              |              |                                                                                   |             | Churcher                 |                  |
|                      |                | ing feature  |              |              |                                                                                   |             | Structures               | •••              |
|                      | Show nega      | tive results |              |              |                                                                                   |             | Deat Court Outline       |                  |
|                      | 🗌 List all mat | ches         |              |              |                                                                                   |             | Post Search Options      |                  |
|                      |                | s            | preadsheet.  |              | · · · · · · · · · · · · · · · · · · ·                                             | <del></del> | hydantoin amide dii      | mer complete     |
|                      |                |              |              |              | 145 150 155 160 165 170 175<br>N2 H22 O1                                          |             | Would you like to:       |                  |
| olay Options         |                |              |              |              |                                                                                   | £×          |                          |                  |
| splay                |                |              |              |              | Options                                                                           |             | Save Result              | s                |
| Deckies              |                |              |              |              |                                                                                   |             | Edit Search              | ı                |
| Packing              | Short Conta    | ict < (sum   | n of vdW rad | lii - 0.15A) | Contacts                                                                          |             | Filter Poculi            | te               |
| Asymmetric Unit      | H-Bond         | User d       | efined       |              | More Info  Show cell axes Z-Clipping                                              |             | ritter Kesuli            | C3m              |
| Auto centre          |                |              |              |              | Bounder Label atoms Stereo                                                        |             | These options are also a | vailable via the |
|                      |                |              |              |              | Powaer                                                                            |             | antions button located   | at the ten sight |

Plot graphs and conduct other analysis

# Try the feature!

- CSD-Materials self-guided workshops: <u>https://www.ccdc.cam.ac.uk/community/</u> <u>training-and-learning/workshop-</u> <u>materials/csd-materials-workshops/</u>
- "Motifs, Crystal Packing Feature and Crystal Packing Similarity Search"



#### 

Table of Content

Search

(Motifs, Crystal Packing Feature,

Crystal Packing Similarity MAT-006)

Developed using



#### How are others using ConQuest and Mercury?

#### Mercury in Action: A Geometry Analysis on Complexes With 2,2'-Dipyridylamine

Dr Tetteh investigated the geometry of first-row transition metal complexes with 2,2'-dipyridylamine and halogen ligands by searching the Cambridge Structural Database (CSD) with ConQuest and analysing the data with Mercury. Density Functional Theory (DFT) calculations were also performed to study the stability of the complexes.

The research is part of the Frank H. Allen International Research and Education (FAIRE) Programme, which supports academic researchers and educators from underrepresented communities with access to the wealth of information contained within the CSD.

#### Why?

The ligand 2.2°-dipyridylamine (dpa, Figure 1 a) is widely used in coordination and organometallic chemistry for its ability to bind to a variety of metal centres and adopt different coordination modes, acting as a monodentate, bidentate, or bridging ligand. Among these, the bidentate coordination mode (Figure 1 b) is particularly stable thermodynamically, and hence it is frequently found in metal complexes.



Figure 1. a) Structure of the ligand dpa and b) bidentate coordination mode for dpa. M = metal centre.

Metal complexes that involve dpa are used as catalysts and other photophysical materials. The ligand is also used for MOFs design and as coligand for magnetic complexes. Despite its popularity, research still needs to be done to understand the chemistry of dpa and its behaviour when in crystal forms.

This work aimed to investigate first-row transition metal complexes with dpa and halogen ligands (F, Cl, Br, and I), and looked at rationalizing their geometry, electronic stability, and reactivity.





Samuel Tetteh, *Cryst. Growth Des.* 2024, 24, 1, 506–513.

# ConQuest in Action: Introducing Intramolecular $\pi$ -Interactions into Heteroleptic Complexes

Here we highlight how the use of ConQuest to search the Cambridge Structural Database (CSD) helped guiding the design and synthesis of new heteroleptic compounds – coordination complexes with more than one type of ligands. Read the full article and find out more about the CCDC data, software, and services to advance structural science

#### Why?

that were used in this work.

Heteroleptic copper(I) compounds can exhibit enhanced photoluminescence quantum yields (PLQY). This property is particularly interesting for applications in organic light emitting diodes (OLEDs) and light-emitting electrochemical cells (LECs).

In this work published in CrystEngComm, the scientists from the University of Basel reported the synthesis and characterization of six new heteroleptic copper(I) compounds. Beside performing solid-state photoluminescence studies, the team also analysed the crystal structures of the compounds and investigated the intramolecular interactions responsible for the enhanced emission.

#### How?

Species with formula [Cu(N^N)(P^P)]<sup>\*</sup>, where N^N = aromatic diimine and P^P = chelating bis(phosphane) are known to be efficient LECs.

When the bis(phosphane) involved presents a wide bite angle (angle on a central atom between two bonds to a bidentate ligand), intramolecular  $\pi$ -stacking interactions can arise between the ligands, enhancing the emission and PLQY in these species. For this reason, the team chose to use **xantphos** and **POP** as P^P ligands.



Catherine Housecroft, et al., *Cryst. Eng. Comm* 2023, 25, 3000–3012.



#### CSD in Action: How Metal Ammine Complexes Interact With Aromatic Rings

Here we highlight a paper by Snežana D. Zarić and co-workers from the University of Belgrade.

In this work, the team analysed the Cambridge Structural Database (CSD) and used quantum chemical calculations to perform an in-depth study of the NH/minteractions between coordinated ammonia (NH<sub>a</sub>) and C<sub>a</sub>-aromatic rings.

#### Why?

 $NH/\pi$  interactions are common in nature. They are found in proteins and related structures, and are involved in important mechanisms such as the transport of ammonia through the cell membrane.





# Free online training courses



With completion certificates!



<complex-block>

Helping you to learn:

- How CSD entries are represented in the API.
- How to access CSD entries programmatically.
- How to read different file formats.
- How to run a search and output results.

https://www.ccdc.cam.ac.uk/community/training-and-learning/csdu-modules/

# More learning events

#### **CCDC Virtual Workshops**

• 5<sup>th</sup> Nov CSD-CrossMiner: Introducing interactive pharmacophore searching across the CSD and the PDB.

#### **CHEMAI Virtual Satellite Event**

 27<sup>th</sup> Nov Unlocking CSD data for Functional Materials innovation.

#### **CCDC Webinars**

• **Coming soon!** The CCDC also regularly host webinars alongside these workshops. Check out our website, social media or sign-up to our newsletter to stay up to date.

