REC

In-Depth Comparison of Polymorphic Structures Using Mercury

CCDC Virtual Workshop

14th May 2024

Learning outcomes for today

- Understand the value of analysing polymorphic structures to assess their stability.
- Re-familiarise with the basics of Mercury, Mogul and Isostar.
- Understand what tools are available in the CSD-Materials suite and how they can be used to compare solid forms, including:
 - Mogul Geometry Check, Hydrogen Bond Statistics, Hydrogen Bond Propensities, Aromatics Analyser, Overlay tools and Full Interaction Maps (FIMs).
- Learn how these tools have been used in industry and what a workflow for assessing solid forms might look like.
- Gain confidence in the software used today so you can apply the techniques on your own systems/structures.

The Cambridge Structural Database

- Every published structure
 - Inc. ASAP & early view
 - CSD Communications
 - Patents

•

- University repositories
- Thesis
- Every entry enriched and annotated by experts
- Discoverability of data and knowledge
- Sustainable for over 58 years
- A trusted CoreTrustSeal repository

Certified as Trustworthy by CoreTrustSeal

Inside the Cambridge Structural Database

The CSD is a database of all the published organic and metal-organic experimental crystal structures

Additional data

- 13,478 polymorph families
- 174,987 melting points
- 1,075,904 crystal colours
- 951,746 crystal shapes
- 30,275 bioactivity details
- 13,641 natural source data
- > 350,000 oxidation states

Links and subsets

- DrugBank
- Druglike
- MOFs
- PDB ligands
- PubChem
- ChemSpider
- Pesticide PDB,

Exploring the CSD

- >1 million structures
 - > 94M 3D coordinates
- > 28 million bond lengths
 - > 2M unique distributions
- > 40 million valence angles
 - > 3M unique distributions
- > 14 million torsion angles
 - > 800K unique distributions
- > 2 million rings
 - > 400K unique distributions
- > 2 million hydrogen bonds
 - >30 million Isostar contacts

Chemistry in the CSD

Number of structures containing certain chemical groups

CCDC

Images and graphics created using the CSD Python API and Flourish

A wealth of data in the CSD

>42% Multiple component structures

*Katerina Vriza, University of Liverpool, PhD on Data driven discovery of functional molecular co-crystal

Small molecules, big impact

200 top drugs by retail sales in 2000

FDA novel drug approvals 2023

*Nature Reviews Drug Discovery **20**, 85-90 (2021)

MOFs

CSD Subsets

Groups of structures that may be more difficult to find in CSD from searching alone

Best representative

- Easy access to the most relevant structures
- Benefit from our in-house and external expertise
- Convenient starting point for analysis using CSD or 3rd party tools
- A basis for your research and crystal engineering

Added in 2022

MOF

Dimensionality

• 3D

 $|\square$

2D

Hydrates

Polymorphs

The CSD Portfolio today

CSDCOTE. Search, visualise, analyse and communicate structural data Insights into molecular and crystal shape and interactions

CSDCommunity.

Deposit, publish, access and visualise structural data Free functionality to share and learn from structures

Medicinal & Computational Chemists Crystallographers & Structural Biologists Solid Form & Crystallisation Scientists Functional Materials Scientists Educators Industry and Academia

Mercury Overview

S AABHTZ (P-1) - Mercury

More advanced functionality to analyse and learn from structures

Display options to visualise and navigate structures

Previous training on Mercury and some of the tools we will use today

Comparing polymorphs

- It can be useful to compare polymorphs and to contextualise them against the structures of the Cambridge Structural Database
 - Quickly visualise differences in conformations and crystal packing.
 - Quickly understand which features of the structure are "unusual" and which may have an impact on the relative stability of the forms.
 - We will briefly cover a number of tools that we use regularly when looking at polymorphs.

Bicalutamide

- Antiandrogen medication to treat prostate cancer
- Biopharmaceutical classification: Type II low water solubility, high permeability
- High pka of 12 poorly soluble in physiological media

Two polymorphs

• JAYCES03, Form I

JAYCES02, Form II

P-1

P2₁/c

• Molecule Overlay (Calculate Menu)

epeating th	e overlay or	selecting dif	ferent molec	ules.	C DETOTE
		R	eset		
esults					
Flexibility	Inversion	Partial	RMSD	Max. D	Display
-	-	-	2.5590	5.5035	۲
-	х	-	2.2696	5.4540	0
х	-	-	0.1949	0.3884	0
х	х	-	0.1949	0.3884	0
Original	Geometry				0

Very different conformations!

- Compare in more detail the conformations using Mogul Geometry Check.
- Compare fragments of target molecule to similar fragments in CSD to learn about expected values for bonds, angles and torsion angles.
- Focus on torsion angles here.

Learn more in the CSDU module

Both modes represented in polymorphs

Mogul search - Torsion angle - O3 C2 C3 N1

Click to (de)select bars; click and drag to (de)select a range

JAYCES03

JAYCES02

CH₂ CN

Major mode represented in polymorphs

JAYCES03

Not very many hits, but can see usual ± 60°, 180° expected for saturated carbons. Flexibility expected and polymorphs show different conformations

Context from CSD

JAYCES03

O4 C3 N1 C10	Not unusual (enough hits)	1093	5.897
C2 C3 N1 C10	Not unusual (enough hits)	86	-175.997
C2 C1 S1 O1	Not unusual (enough hits)	86	28.544
C2 C1 S1 O2	Not unusual (enough hits)	86	156.366
C2 C1 S1 C4	Not unusual (enough hits)	43	-87.969
O3 C2 C1 S1	Not unusual (enough hits)	40	56.932
C3 C2 C1 S1	Not unusual (enough hits)	41	-63.316
C18 C2 C1 S1	Not unusual (enough hits)	41	179.240
O3 C2 C3 O4	Not unusual (enough hits)	45	-169.517
O4 C3 C2 C1	Not unusual (enough hits)	45	-49.981
O4 C3 C2 C18	Not unusual (enough hits)	42	68.128
O3 C2 C3 N1	Not unusual (enough hits)	42	12.284
C1 C2 C3 N1	Not unusual (enough hits)	45	131.820
C18 C2 C3 N1	Not unusual (enough hits)	42	-110.070
C5 C4 S1 O1	Not unusual (enough hits)	3428	-27.176
C5 C4 S1 O2	Not unusual (enough hits)	3428	-156.564
C5 C4 S1 C1	Not unusual (enough hits)	1611	89.341
C9 C4 S1 O1	Not unusual (enough hits)	3428	152.182
C9 C4 S1 O2	Not unusual (enough hits)	3428	22.794
C9 C4 S1 C1	Not unusual (enough hits)	1611	-91.301
C11 C10 N1 C3	Not unusual (enough hits)	5718	151.012
C15 C10 N1 C3	Not unusual (enough hits)	5718	-30.686
F2 C16 C12 C11	Not unusual (enough hits)	5739	0.215
F2 C16 C12 C13	Not unusual (enough hits)	2164	-179.117
F3 C16 C12 C11	Not unusual (enough hits)	5739	-120.517
F3 C16 C12 C13	Not unusual (enough hits)	2164	60.152
F4 C16 C12 C11	Not unusual (enough hits)	5739	121.409
F4 C16 C12 C13	Not unusual (enough hits)	2164	-57.923

	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
"Not Unusual" classification	0.000
	0.000
for torsions in both	0.000
	0.000
polymorphs	0.001
Conformations different	0.000
	0.000
but not expecting one to be	0.000
	0.000
much higher in energy	0.000
	0.000

0.000

0.993 0.988 0.209 0.198 0.442 0.650 0.634 0.585 0.622 0.600 0.619 0.833 0.622 0.595

0.242 0.242

0.439

0.239 0.238

0.435 0.188 0.187 0.144 0.173

0.278

0.326 0.277

0.332

Cocrystals of the antiandrogenic drug bicalutamide: screening, crystal structures, formation thermodynamics and lattice energies†

Artem O. Surov,^a Katarzyna A. Solanko,^b Andrew D. Bond,th Annette Bauer-Brandl^b and German L. Perlovich^{*a}

4822 | CrystEngComm, 2016, **18**, 4818–4829

CrystEngComm

Bicalutamide is known to be a flexible molecule, which displays the so-called conformational polymorphism in the solid state.¹⁹ Comprehensive conformational analysis performed by Dhaked *et al.*³⁹ and Le *et al.*¹⁰ using quantum chemical calculations has indicated that molecular conformations of **Bic** in polymorphs I and II belong to different energy minima separated by a relatively low energy barrier. The form II conformation, however, was found to be a relatively higherenergy state, at least in the gas phase.

Structures	τ1	τ2	τ3	τ5	τ6	OH13 interaction	NH17 interaction	Absolute energy ^a (a.u.)	Relative energ (kcal/mol)
1	-171	-70	130	-177	-26	Н…О9	N17-H…O13	-1902.04437	0.00
1a	-165	-49	71	180	-88	HO16	-	-1902.03189	7.83
1b	159	177	125	178	53	HO10	N17-H…O13	-1902.04532	-0.60
1c	165	158	-79	179	-98	HO16	-	-1902.03014	8.93
1d	-171	89	-58	-177	-130	HO16	N17-HO10	-1902.04258	1.12
1e	148	56	-75	-172	-110	HO16	N17-H…O10	-1902.03944	3.09
2	79	-73	139	0	-34	HO10	N17-H-013	-1902.04431	0.04

Struct Chem (2012) 23:1857-1866

- Identify parts of the molecule which have potential to be flexible.
- Understand how geometry of polymorphs differ.
- Understand if torsion angles are unusual.
- Gain insights into risk of polymorphism.

Polymorphs have different conformations but no unusual torsion angles. Don't expect one conformation to be significantly different in energy to the other.

Intermolecular interactions and packing

- Look at the packing environment of the molecules using a range of tools.
- Use CSD for context (unusual hydrogen bond parameters for example) as well as enabling comparison of structures.

Packing

CSD	-Materials	CSD-Theory	CSE)-Particle	CSD-Discove	ery CSD Pyt	hon API	Help	
	Search		•	Mot	ifs		\sim		
	Calculation	ns	•	Crys	tal Packing Fe	ature			
	Polymorph	h Assessment	•	Crys	tal Packing Si	milarity	↓ ↑ zo	oom- zoor	n+
	Co-Crystal	Design	•	Man	age Searches.				
	Full Interac Hydrogen	ction Maps Bond Statistics		Post	Search Optio	ns			
	Hydrate An Solvate An Aromatics	nalyser alyser Analyser				~			
	Conforme	r Generation			reference	comparison	molecu	les in com	RMS
	DASH has	moved			JAYCES	JAYCESUT JAYCES02	1 out of 1 out of	f 15 of 15	2.275
					JAYCES	JAYCES04	15 out o	of 15	0.011
					JAYCES01	JAYCES02	1 out of	f 15	2.277
					JAYCES01	JAYCES03	15 out o	of 15	0.16
					JAYCES01	JAYCES04	15 out o	of 15	0.058
					JAYCES02	JAYCES03	1 out of	f 15	2.269
					JAYCES02	JAYCES04	1 out of	f 15	2.275

JAYCES03

JAYCES04

15 out of 15

group2

group1

0.125

Intermolecular Interactions: Hydrogen bonds

File Edit	t Selection Disp	lay Calculate	CSD-Co	mmunity	CSD-Core	CSD-Materials	CSD-Theory	CSE)-Par	ticle
Picking Mo	de: Pick Atoms		~ C	lear Measu	rements 🕒	Search		•	ns	
Style: Bal	l and Stick 🛛 🗸 Colour	by Element		∼ ∮ Ma	anage Styles	Calculation	ns	•		~
Anin	nate Default vie	w: b \checkmark	a b c	a* b*	c* x- x-	Polymorpl	n Assessment	•	-90	y+90
Structure I	Navigator		ð	×		Co-Crysta	Design	•		
JAYCES02			Find			Full Interac	tion Maps			
Crystal St	ructures	Spacegrou	qu	^		Hydrogen	Bond Statistics			
	JAYCES JAYCES01 JAYCES02 JAYCES03 JAYCES04 JAYCEU	P21/c P21/c P-1 P21/c P21/c P-1 P-1				Hydrate An Solvate An Aromatics Conforme	nalyser alyser Analyser r Generation	R		
	JAYCIW JAYCIW	P21/n 2/a				DASH has	moved			

- Using standardised functional group definitions searches for hydrogen bonds in CSD to compare to those found in the target structure.
- Returns assessment of length and angle of Hbond with respect to CSD-derived distributions.

Hydrogen bonds

😵 Hydrogen Bond Statistics ... JAYCES03

	Donor	Acceptor	Distance D-A	Distance classification	Distance threshold	Distance hits	Distance mean	Distance std. dev.	Distance min.	Distance max.	Angle D-HA	Angle classification	Angle threshold	Angle hits	Angle mean	Angle std. dev.	Angle min.	Angle max.
1	N1 (ar_al_trans_amide)	O2 (ar_al_sulfone)	3.51	Unusual	(2.94, 3.50)	8	3.22	0.25	2.91	3.51	152.93	Not Unusual	122.61	8	149.32	16.38	120.08	167.94
2 (O3 (acyclic_al_oh)	O4 (ar_al_trans_amide)	3.12	Unusual	(2.65, 2.90)	103	2.76	0.10	2.63	3.34	144.89	Unusual	145.38	103	168.70	11.45	120.67	179.23

Hydrogen bonds

😵 Hydrogen Bond Statistics ... JAYCES02

	Donor	Acceptor	Distance D-A	Distance classification	Distance threshold	Distance hits	Distance mean	Distance std. dev.	Distance min.	Distance max.	Angle D-HA	Angle classification	Angle threshold	Angle hits	Angle mean	Angle std. dev.	Angle min.	Angle max.
1 [N1 (ar_al_trans_amide)	O2 (ar_al_sulfone)	3.15	Not Unusual	(2.94, 3.50)	8	3.22	0.25	2.91	3.51	148.17	Not Unusual	122.61	8	149.32	16.38	120.08	167.94
2 (O3 (acyclic_al_oh)	N2 (ar_nitrile)	2.99	Not Unusual	(2.81, 3.08)	56	2.93	0.10	2.78	3.31	171.44	Not Unusual	143.84	56	167.95	12.75	125.90	179.54

• Hydrogen Bond Statistics allows you to assess hydrogen bond parameters in context of similar interactions from the CSD. Unusual geometries may suggest less stabilising interactions.

Hydrogen bonding is different between polymorphs, but both polymorphs show transamide to sulfone interaction

Not very many hits in CSD

H-bonding in JAYCES03 is classified as unusual: long non-linear interactions

Full Interaction Maps

CSD-Materials	CSD-Theory	CSE)-Par	ticle				
Search		•	1					
Calculation	ns	•		~				
Polymorph	Assessment	۲	-90	y+9				
Co-Crystal	Design	•						
Full Interac	Full Interaction Maps							
Hydrogen	Bond Statistics.		۲.					
Hydrate Ar	nalyser							
Solvate An	alyser							
Aromatics	Aromatics Analyser							
Conforme	Conformer Generation							
DASH has	moved							

- Shows density maps for where functional groups are expected to be found for target molecule.
- Uses central groups (to model target molecule) and "probe" groups to map where interactions are expected.
- Very visual tool allows you to see what an ideal packing environment should provide.

• Poor geometry of hydrogen bonds seen in FIMs too. Ideal packing environment not matched in either polymorph.

Hydrogen Bond Propensities

CSD-Materi	ls CSD-Theory	CSD-Parti	cle CSD-Discovery	CSD Python API
Search		▶ ns	✓ with Atom	Label \lor
Calcula	tions	•	Select by SMART	rs: [c]
Polym	orph Assessment	•	Hydrogen Bond Prop	ensities
Co-Cry	stal Design	•	H-bond Coordination	Quick-view 🤨
Full Int Hydrog	eraction Maps Jen Bond Statistics			
Hydrat Solvate Aroma	e Analyser Analyser tics Analyser			
Confo	mer Generation			
DASH	as moved			

- Assesses donor-acceptor pairings and use of functional groups by modelling behaviour of functional groups in relevant structures from the CSD.
- For more details see: <u>https://www.ccdc.cam.ac.uk/community/training</u> <u>-and-learning/workshop-materials/csd-</u> <u>materials-workshops/</u>
 - "Exploring Hydrogen Bond Propensities" and "Investigating solid form stability: understanding Hydrogen Bond Propensities"

Hydrogen bond networks

Hydrogen bond networks

0.8

Modelling from H-bond interactions in CSD suggests that JAYCES03 has a more likely H-bond network but propensities of interactions low

Donor	Acceptor	Polymorph
Acyclic_OH	O of trans_amide	JAYCES03
Acyclic_OH	N of ar_nitrile	JAYCES02
N of trans_amide	O of sulfone	JAYCES02/03

Hydrogen Bonding

- Use the CSD for context to understand if hydrogen bonds have unusual geometries and hence might be less stabilising.
- Understand the use of different donors and acceptors in the polymorphs in terms of predictions based on CSD data. Allows "ranking" of structures.
- Compare how packing environment matches "ideal" environment from Full Interaction Maps.

JAYCES02 has better geometry of interactions but poorer donor-acceptor pairings. Amide to sulfone interaction is "unusual" and Hydrogen bond propensities for both polymorphs are low.

Aromatic Interactions

CSD-Materials	CSD-Theory	CSD	-Par	ticle	CSD-D	iscovery	C	SD P	ytho	n AP	I Helj	р
Search		•	ns		\sim v	vith Ator	n Lab	el				
Calculation	ns	•		~	Select	by SMAR	RTS:	c]				
Polymorph	h Assessment	۲	-90	y+90	z-90	z+90	\leftarrow	\rightarrow	\downarrow	\uparrow	zoom-	zoom+
Co-Crystal	l Design	•										
Full Interac	ction Maps											
Hydrogen	Bond Statistics.											
Hydrate A	nalyser											
Solvate An	alyser											
Aromatics	Analyser											
Conforme	r Generation		τ. Ι									
DASH has	moved											

- Dataset of 25,000 benzene-ring pairs generated.
- Energies of interaction calculated.
- Neural network learned relationship between geometric parameters and energy.

CCDC

• Assessment of strength of interaction between C₆ rings.

• JAYCES03, Form I. Both aromatic rings show 2 strong interactions

	Centroid1	Centroid2	Distance	Relative Orientation	Inter- molecular	Score	Assessment	î
1	1	19	4.33	0	Yes	8.6	Strong	
2	2	18	4.7	0	Yes	7.8	Strong	
3	1	12	5.1	25.64	Yes	7	Strong	
4	2	13	5.1	25.64	Yes	7	Strong	
5	and a	21	6.78	0	Yes	3.6	Moderate	
6	1	25	6.53	64.77	Yes	3.3	Moderate	
1	1	27	6.53	64.77	Yes	3.3	Moderate	~

Charge density view on bicalutamide molecular interactions in the monoclinic polymorph and androgen receptor binding pocket

IUCrJ (2020). **7**, 71–82

Alexander A. Korlyukov,^a‡ Maura Malinska,^b‡ Anna V. Vologzhanina,^a Mikhail S. Goizman,^c Damian Trzybinski^b and Krzysztof Wozniak^b*

Table 3

Energies $(kJ \text{ mol}^{-1})$ of intermolecular interactions in the **Bic** crystal structure calculated by the UNI force field and the dimer interaction energies calculated using *Crystal Explorer* based on the PIXEL method [CE-B3LYP/6-31 G(d,p)].

	Dimer	UNI empirical force field $\overline{E_{\text{tot}}}$	CE-B3LYP/6-31G(d,p)					
Symmetry operation			$E_{\rm el}$	$E_{\rm pol}$	$E_{\rm dis}$	$E_{\rm rep}$	$E_{\rm tot}$	
x, 1/2 - y, z - 1/2	Dimer 1	-65.2	-42.9	-16.4	-54.0	52.7	-71.6	
-x, 1-y, 1-z	Dimer 2	-37.0	-16.2	-4.5	-36.6	23.2	-37.9	
1 - x, 1/2 + y, 3/2 - z	Dimer 3	-29.6	-17.8	-4.3	-13.1	6.8	-29.2	
1 - x, -y, 1 - z	Dimer 4	-24.1	-8.8	-4.5	-34.6	24.3	-27.7	
x, 3/2 - y, z - 1/2	Dimer 5	-17.4	-12.1	-4.5	-19.9	14.4	-24.5	
x,-1+y,z	Dimer 6	-16.8	-14.3	-4.6	-15.3	15.1	-22.6	

Strong Aromatic ring interactions

What did we learn?

- Molecule has potential to be conformationally flexible and different conformations realised in polymorphs.
- Conformations different but no suggestion that one is significantly higher in energy.
- Hydrogen bond interactions differ and geometry looks better in JAYCES02 but donor-acceptor pairings look better in JAYCES03. Neither structure has very good interactions.
- Aromatic interactions look very good in JAYCES03.
- Happy with hydroxy proton position? Multicomponent forms?

Experimentally

- JAYCES03 is more stable polymorph.
- 4 cocrystals and 1 solvate of bicalutamide in CSD and in all multicomponent forms, no bicalutamide-bicalutamide hydrogen bonding is retained.

Get to know your polymorphs better!

Comparison of polymorphs and the addition of context from the CSD can help understand the difference between the solid forms and may highlight areas to explore experimentally

What have we learnt today?

- Understood the value of analysing polymorphic structures to assess their stability.
- Re-familiarised with the basics of Mercury, Mogul and Isostar.
- Explored what tools are available in the CSD-Materials suite and learnt how they can be used to compare solid forms, including:
 - Mogul Geometry Check, Hydrogen Bond Statistics, Hydrogen Bond Propensities, Aromatics Analyser, Overlay tools and Full Interaction Maps (FIMs).
- Learnt how these tools have been used in industry and what a workflow for assessing solid forms might look like.
- Gained confidence in the software used today so you can apply the techniques on your own systems/structures.

Want to explore more?

Case studies

	CCDC	CCDC
	WH/TEN/KS 300	WATERATER BER
	Solid Form Informatics for Pharmaceuticals and Fine Chemicals.	From Crystal Structures to Patients.
ltancy Service:		
ence Commun on	Unlocking Solid Form Innovat	ion in CSD-Materials
ence Stories	Blog Hydrogen Bond Mercury Solid Form Stability	
entific Research	Investigating Calid Farm Ctab	ility a landaratan dia a
KRD	Hydrogen Bond Propensity in	n Mercury
ARTS	Blog CSD Landscape Generator. CSD-Theory Polymorph Solid Form Inform	atics
iles	How to Generate a Solid Form	n Landscape without a
tware	Crystal Structure with C!	
id Form	Blog CSD-Materials Solid Form Informatics	
id Form Informatics id Form Stability	How to Analyse Hydroge	
vate Analyser	Blog CSD-Materials DrugDevelopment Matwall Pharmace	
uchkov Prize	Matwall: materials knowl development to comme	

https://www.ccdc.cam.ac.uk/community/training-and-learning/csdu-modules/

With completion certificates!

Surface analysis

Helping you to learn:

- The basics of CSD-Particle.
- How to perform a surface analysis.
- How to visualise likely interactions with the surface using Full Interaction Maps (also a CSDU course!).

Upcoming Events

CCDC Webinar: The Role of Quality Data in Advancing AI and ML in Life Sciences

Date: 30 May 2024

Read More

•

Find all webinars, training and events and links to registration from this webpage!

CCDC

Science Day 2024 27th June, 8.30 am – 4 pm Cambridge

CCDC

https://www.ccdc.cam.ac.uk/community/events/